吉首大学《数字平面设计基础》2021-2022学年第一学期期末试卷_第1页
吉首大学《数字平面设计基础》2021-2022学年第一学期期末试卷_第2页
吉首大学《数字平面设计基础》2021-2022学年第一学期期末试卷_第3页
吉首大学《数字平面设计基础》2021-2022学年第一学期期末试卷_第4页
吉首大学《数字平面设计基础》2021-2022学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页吉首大学

《数字平面设计基础》2021-2022学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的行人重识别任务中,假设要在多个摄像头拍摄的画面中找到同一个行人。以下关于特征融合的方法,哪一项是不太合理的?()A.将行人的外观特征和步态特征进行融合B.简单地将不同特征进行拼接,不考虑权重分配C.根据特征的重要性为其分配不同的权重进行融合D.利用深度学习模型自动学习特征的融合方式2、计算机视觉在农业中的应用可以帮助监测农作物的生长状况。假设要通过图像分析判断农作物的病虫害程度,以下关于农业计算机视觉应用的描述,正确的是:()A.仅依靠农作物的颜色特征就能准确判断病虫害的程度B.不同农作物品种和生长阶段对病虫害判断的影响不大C.结合图像的纹理、形状和颜色等多特征,可以更准确地评估农作物的健康状况D.农业环境的复杂性对计算机视觉的应用没有挑战3、当利用计算机视觉技术对医学影像(如X光、CT等)进行分析,辅助医生进行疾病诊断时,需要从大量的图像数据中提取有价值的特征。以下哪种特征提取方法在医学影像分析中可能具有较高的应用价值?()A.基于形状的特征提取B.基于纹理的特征提取C.基于深度学习的自动特征学习D.基于颜色的特征提取4、计算机视觉在无人驾驶中的应用需要应对各种复杂的环境和情况。假设无人驾驶汽车要在恶劣天气下行驶,以下关于计算机视觉在无人驾驶中的挑战的描述,哪一项是不正确的?()A.恶劣天气会影响图像的质量和清晰度,增加目标检测和识别的难度B.计算机视觉系统需要与其他传感器(如雷达和超声波传感器)融合,以提高在恶劣天气下的感知能力C.深度学习模型在恶劣天气条件下的性能会显著下降,无法正常工作D.针对恶劣天气,可以通过数据增强和模型优化等方法提高计算机视觉系统的鲁棒性5、计算机视觉中的图像语义分割需要为图像中的每个像素分配类别标签。假设要对一张城市街景图像进行语义分割,包括道路、建筑物、车辆和行人等。以下哪种图像语义分割方法在处理这种复杂场景时能够提供更精细的分割结果?()A.全卷积网络(FCN)B.U-NetC.SegNetD.DeepLab6、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定的目标。以下关于目标跟踪的叙述,不正确的是()A.目标跟踪可以基于特征匹配、滤波算法或深度学习方法来实现B.目标的外观变化、遮挡和背景干扰等因素会给目标跟踪带来挑战C.目标跟踪在智能监控、人机交互和自动驾驶等领域有着广泛的应用D.目标跟踪算法能够在任何情况下都准确地跟踪目标,不受复杂环境的影响7、在医学图像分析中,计算机视觉技术有助于疾病的诊断和治疗。假设医生需要对一组肺部CT图像进行分析,以检测是否存在肿瘤。以下关于医学图像分析中的计算机视觉的描述,哪一项是不准确的?()A.计算机视觉算法可以自动检测和定位肺部肿瘤,提高诊断的效率和准确性B.能够对图像进行增强和预处理,突出病变区域,便于医生观察和判断C.由于医学图像的复杂性和个体差异,计算机视觉的结果总是完全准确无误的D.可以通过大量标注的医学图像数据进行训练,学习正常和异常的图像特征8、在计算机视觉的立体视觉中,需要通过两个或多个相机获取的图像来计算深度信息。假设要为一个自动驾驶汽车构建立体视觉系统,以测量与前方障碍物的距离,同时要考虑实时性和准确性的要求。以下哪种立体匹配算法在这种应用场景中表现最优?()A.基于区域的匹配B.基于特征的匹配C.基于深度学习的匹配D.全局优化匹配9、计算机视觉中的图像去噪旨在去除图像中的噪声,恢复清晰的图像。假设要处理一张受到严重噪声污染的天文图像,以下关于去噪算法的选择,哪一项是需要谨慎考虑的?()A.选择基于滤波的去噪算法,如中值滤波B.采用基于深度学习的去噪算法,如自编码器C.只考虑去噪效果,不关心图像细节的保留D.根据噪声的类型和强度选择合适的去噪算法10、在计算机视觉的图像配准任务中,假设要将两张不同视角拍摄的同一物体的图像进行对齐。以下关于图像配准方法的描述,正确的是:()A.基于特征点的配准方法对图像的旋转、缩放和平移具有不变性,但特征点的提取容易出错B.基于灰度的配准方法计算简单,但对光照变化和噪声敏感C.深度学习中的自监督学习方法在图像配准中无法学习到有效的特征表示D.图像配准的精度只取决于配准算法的选择,与图像的质量和特征无关11、计算机视觉中的视频理解不仅包括对单个帧的分析,还需要考虑帧之间的关系。假设我们要理解一个电影片段的情节和情感,以下哪种方法能够有效地捕捉视频中的时空动态信息和语义信息?()A.基于帧级特征和分类器的方法B.基于深度学习的视频理解模型,结合注意力机制C.基于光流和运动轨迹的方法D.基于音频和视频融合的方法12、计算机视觉在自动驾驶领域发挥着重要作用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志、车辆和行人。以下关于自动驾驶中计算机视觉的描述,哪一项是不正确的?()A.计算机视觉可以通过摄像头实时获取道路信息,为车辆的决策和控制提供依据B.它能够准确识别不同光照和天气条件下的交通对象,不受任何干扰C.深度学习算法在自动驾驶的计算机视觉中被广泛应用,用于目标检测和语义分割D.计算机视觉需要与其他传感器(如雷达、激光雷达)的数据融合,以提高感知的可靠性13、当利用计算机视觉进行图像检索任务,例如在海量图像库中查找相似的图像,以下哪种图像表示方法可能对检索效果产生重要影响?()A.全局特征B.局部特征C.深度学习特征D.以上都是14、当利用计算机视觉进行图像超分辨率重建任务,将低分辨率图像恢复为高分辨率图像,以下哪种深度学习模型可能在重建效果上表现出色?()A.SRCNNB.ESPCNC.DRCND.以上都是15、计算机视觉中的场景理解需要从图像中推断出物体之间的关系和场景的语义信息。假设要理解一张室内办公室场景的图像,包括家具的布局、人员的活动等。以下哪种方法在进行场景理解时最为有效?()A.基于对象检测和分类的方法B.基于图模型的场景表示C.基于深度学习的场景解析D.基于规则推理的方法二、简答题(本大题共3个小题,共15分)1、(本题5分)计算机视觉中如何实现车道线检测?2、(本题5分)解释计算机视觉中的姿态估计任务。3、(本题5分)简述图像的色彩调整软件。三、应用题(本大题共5个小题,共25分)1、(本题5分)基于计算机视觉的智能售货机系统,通过商品图像识别实现自动售货。2、(本题5分)利用目标检测算法,在农业图像中检测病虫害。3、(本题5分)使用计算机视觉方法,检测公交车内乘客是否佩戴口罩。4、(本题5分)基于深度学习,实现对足球比赛中越位情况的检测。5、(本题5分)运用计算机视觉技术,对铁路轨道的安全性进行检测和预警。四、分析题(本大题共3个小题,共30分)1、(本题10分)研究某科技展会的宣传物料设计,分析其创新的科技

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论