版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省威海市示范名校2025届高三第二次调研数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若均为任意实数,且,则的最小值为()A. B. C. D.2.执行下面的程序框图,则输出的值为()A. B. C. D.3.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为()A. B. C. D.4.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.6.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.7.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户8.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根9.已知复数,为的共轭复数,则()A. B. C. D.10.函数fxA. B.C. D.11.设,其中a,b是实数,则()A.1 B.2 C. D.12.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数,若函数的最大值为,则实数的最大值为______.14.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.15.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°16.已知函数,若,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)直线的极坐标方程为,连接并延长交于,求的最大值.18.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.19.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.20.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.21.(12分)已知函数,函数.(Ⅰ)判断函数的单调性;(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.22.(10分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.2、D【解析】
根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.3、B【解析】
根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人:将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.4、D【解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.5、A【解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.6、C【解析】
根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.7、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.8、C【解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.9、C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.10、A【解析】
由f12=e-14>0排除选项D;【详解】由f12=e-14>0,可排除选项D,f-1=-e【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→011、D【解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.12、D【解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据,则当时,,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,又当时,,即.当时,显然成立;当时,由等价于,令,,当时,,单调递增,当时,,单调递减,,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.14、【解析】
根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积.【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题.15、4【解析】
设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.16、【解析】
画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【详解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为:【点睛】本题考查利用函数奇偶性及单调性解不等式.函数奇偶性的常用结论:(1)如果函数是偶函数,那么.(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)设的极坐标为,在中,有,即可得结果;(2)设射线:,,圆的极坐标方程为,联立两个方程,可求出,联立可得,则计算可得,利用三角函数的性质可得最值.【详解】(1)设的极坐标为,在中,有,点的轨迹的极坐标方程为;(2)设射线:,,圆的极坐标方程为,由得:,由得:,,,当,即时,,的最大值为.【点睛】本题考查极坐标方程的应用,考查三角函数性质的应用,是中档题.18、(1)见解析(2)【解析】
(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【解析】
试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为,,因为曲线在点处的切线方程为,所以解得.令,得,当时,,在区间内单调递减;当时,,在区间内单调递增.所以函数的单调递减区间为,单调递增区间为.(2)由(1)得,.由,得,即.要证,需证,即证,设,则要证,等价于证:.令,则,∴在区间内单调递增,,即,故.20、(1);(2).【解析】
(1)利用消去参数,得到曲线的普通方程,再将,代入普通方程,即可求出结论;(2)由(1)得曲线表示圆,直线曲线C交于A,B两点,最大值为圆的直径,直线过圆心,即可求出直线的方程.【详解】(1)由曲线C的参数方程(为参数),可得曲线C的普通方程为,因为,所以曲线C的极坐标方程为,即.(2)因为直线(t为参数)表示的是过点的直线,曲线C的普通方程为,所以当最大时,直线l经过圆心.直线l的斜率为,方程为,所以直线l的直角坐标方程为.【点睛】本题考查参数方程与普通方程互化、直角坐标方程与极坐标方程互化、直线与曲线的位置关系,考查化归和转化思想,属于中档题.21、(1)故函数在上单调递增,在上单调递减;(2).【解析】试题分析:(Ⅰ)根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性.(Ⅱ)分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求.试题解析:(I)由题意得,,∴.当时,,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增.不妨设,又函数单调递减,所以原问题等价于:当时,对任意,不等式恒成立,即对任意,恒成立.记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度金融企业员工薪酬激励与职业发展集体合同范本3篇
- 二零二五年度装修工程合同解除与违约责任装修合同2篇
- 2024版铁路冷链运输协议范本版B版
- 2024版典当行房产抵押服务协议3篇
- 二零二五年度钢管配件定制与销售合同3篇
- 2024版装修水磨石工程协议范本关键内容解析版B版
- 提升小学生英语朗读水平的策略与方法汇报
- 二零二五年度房地产营销市场调研承包合同6篇
- 2024版专业货物运输协议签订指南与注意事项版B版
- 二零二五年度有机化学品安全存储运输合同3篇
- 理论力学-上海交通大学中国大学mooc课后章节答案期末考试题库2023年
- 肃北县长流水金矿 矿产资源开发与恢复治理方案
- SRD控制器使用说明书
- 水下摄影技巧
- 雨水暗沟施工方案实用文档
- 医院卫生院安全生产领导责任清单
- 2023年已打印自主招生数学试题及答案
- 非计划性拔管风险评估表二
- 外贸财务对账单英文版-带公式
- 六年级下册《国学经典诵读》教案
- 北教版四年级综合实践下册 第十一课饮料中的学问
评论
0/150
提交评论