版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市徐汇区上海师大附中2025届高考冲刺押题(最后一卷)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或2.已知,,则()A. B. C. D.3.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A. B. C. D.4.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.5.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.6.若复数是纯虚数,则()A.3 B.5 C. D.7.两圆和相外切,且,则的最大值为()A. B.9 C. D.18.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A. B. C. D.以上都不对9.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.10.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.11.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.12.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则_____,(的值为______.14.设集合,,则____________.15.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种.(用数字作答)16.已知函数为奇函数,,且与图象的交点为,,…,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(Ⅰ)当时,证明;(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.18.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.19.(12分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.20.(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.21.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.22.(10分)已知正实数满足.(1)求的最小值.(2)证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.2、D【解析】
分别解出集合然后求并集.【详解】解:,故选:D【点睛】考查集合的并集运算,基础题.3、D【解析】
连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,,在等腰中,取的中点为,连接,则,,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.4、B【解析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.5、D【解析】
首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6、C【解析】
先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.7、A【解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.8、A【解析】
首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,,,,,,,,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,,共种情况,故随机选出两个不同的数,其和等于的概率.故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.9、B【解析】
由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.11、B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B12、B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.【点睛】本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.14、【解析】
先解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:【点睛】本题考查集合的交集运算,考查解一元二次不等式.15、1.【解析】试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1.考点:排列、组合及简单计数问题.点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详.16、18【解析】
由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18【点睛】本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ)1.【解析】
(Ⅰ)令,;则.易得,.即可证明;(Ⅱ),分①,②,③当时,讨论的零点个数即可.【详解】解:(Ⅰ)令,;则.令,,易得在递减,在递增,∴,∴在恒成立.∵在递减,在递增.∴.∵;(Ⅱ)∵点,点,∴,.①当时,可知,∴∴,,∴.∴在单调递增,,.∴在上有一个零点,②当时,,,∴,∴在恒成立,∴在无零点.③当时,,.∴在单调递减,,.∴在存在一个零点.综上,的零点个数为1..【点睛】本题考查了利用导数解决函数零点问题,考查了分类讨论思想,属于压轴题.18、(1)(2)【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.【详解】解:(1)或或解得或或无解综上不等式的解集为.(2)时,,即所以只需在时恒成立即可令,由解析式得在上是增函数,∴当时,即【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.19、(1)(2)当时,;当时,.【解析】
(1)利用数列与的关系,求得;(2)由(1)可得:,,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,,当时,,因为适合上式,所以.(2)由(1)得,,设等比数列的公比为,则,解得,当时,,当时,.【点睛】本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考查运算求解能力..20、(1),单调性见解析;(2)不存在,理由见解析【解析】
(1)由题意得,即可得;求出函数的导数,再根据、、、分类讨论,分别求出、的解集即可得解;(2)假设满足条件的、存在,不妨设,且,由题意得可得,令(),构造函数(),求导后证明即可得解.【详解】(1)由题可得函数的定义域为且,由,整理得..(ⅰ)当时,易知,,时.故在上单调递增,在上单调递减.(ⅱ)当时,令,解得或,则①当,即时,在上恒成立,则在上递增.②当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.③当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.综上,当时,在上单调递增,在单调递减.当时,在及上单调递增;在上单调递减.当时,在上递增.当时,在及上单调递增;在上递减.(2)满足条件的、不存在,理由如下:假设满足条件的、存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版活动场地合作及管理合同版
- 2024模具用钢材购销合同
- 2024版饭店小店转让协议书
- 2025年度西安二手车经纪佣金分成合同范本3篇
- 2025年沪科新版高二物理下册月考试卷含答案
- 2023年春人教版一年级数学下册全册教案
- 化工厂安全环保管理培训
- 医学生实习报告制作指南
- 河北省秦皇岛市(2024年-2025年小学六年级语文)统编版期中考试((上下)学期)试卷及答案
- 河南省濮阳市(2024年-2025年小学六年级语文)统编版摸底考试(上学期)试卷及答案
- 《中国血脂管理指南》考试复习题库(含答案)
- 人教版道德与法治八年级上册2.1网络改变世界课件
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 中医诊疗规范
- 工业互联网平台 安全生产数字化管理 第2部分:石化化工行业 编制说明
- 第14课《叶圣陶先生二三事》导学案 统编版语文七年级下册
- 成人手术后疼痛评估与护理-中华护理学会团体标准2023 2
- DB15-T 3585-2024 高标准农田施工质量评定规程
- 北师大版八年级上册数学期中综合测试卷(含答案解析)
- 天津滨海新区2025届数学七年级第一学期期末学业质量监测模拟试题含解析
- 2024年浙江省台州市仙居县中考二模科学试卷
评论
0/150
提交评论