版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page第十章新定义(模块综合调研卷)(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试卷和答题卡一并上交。一、单选题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各项点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是,所以正四面体在每个顶点的曲率为,故其总曲率为.已知多面体的顶点数V,棱数E,面数F满足,则八面体的总曲率为(
)
A. B. C. D.2.定义表示两个数中的较小者,表示两个数中的较大者,设集合都是的含有两个元素的子集,且满足:对任意的都有,,则的最大值是A. B. C. D.3.丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别在函数的凹凸性与不等式方面留下了很多宝贵的成果.若为上任意个实数,满足,则称函数在上为“凹函数”.也可设可导函数在上的导函数为在上的导函数为,当时,函数在上为“凹函数”.已知,且,令的最小值为,则为(
)A. B. C. D.4.设集合.对于集合的子集A,若任取A中两个不同元素,有,且中有且只有一个为,则称A是一个“好子集”.下列结论正确的是(
)A.一个“好子集”中最多有个元素 B.一个“好子集”中最多有个元素C.一个“好子集”中最多有个元素 D.一个“好子集”中最多有个元素5.对于数列,若存在正数,使得对一切正整数,都有,则称数列是有界的.若这样的正数不存在,则称数列是无界的.记数列的前项和为,下列结论正确的是(
)A.若,则数列是无界的 B.若,则数列是有界的C.若,则数列是有界的 D.若,则数列是有界的6.对于三次函数给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”,同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心,若,请你根据这一发现计算:(
)A.2021 B.2022 C.2023 D.20247.已知无穷数列,.性质,,,性质,,,,给出下列四个结论:①若,则具有性质;②若,则具有性质;③若具有性质,则;④若等比数列既满足性质又满足性质,则其公比的取值范围为.则所有正确结论的个数为(
)A.1 B.2 C.3 D.48.设,若函数有且只有三个零点,则实数的取值范围为(
)A. B. C. D.二、多选题(本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对得6分,部分选对得部分分,有选错得0分)9.若数列满足(,为常数),则称数列为“调和数列”.已知数列为“调和数列”,下列说法正确的是(
)A.若,则B.若,且,,则C.若中各项均为正数,则D.若,,则10.已知向量,,O是坐标原点,若,且方向是沿的方向绕着A点按逆时针方向旋转角得到的,则称经过一次变换得到.现有向量经过一次变换后得到,经过一次变换后得到,…,如此下去,经过一次变换后得到,设,,,下列结论中正确的是(
).A. B.C. D.11.记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.则下列说法正确的是(
)A.函数与不存在“S点”B.若函数与存在“S点”,则C.对于函数与.对于任意的,均不存在,使得函数与在区间内存在“S点”D.对于函数与.对于任意的,存在,使得函数与在区间内存在“S点”三、填空题(本题共3小题,每小题5分,共15分)12.,若定义,则中的元素有个.13.在空间直角坐标系下,由方程所表示的曲面叫做椭球面(或称椭圆面).如果用坐标平面分别截椭球面,所得截面都是椭圆(如图所示),这三个截面的方程分别为,,上述三个椭圆叫做椭球面的主截线(或主椭圆).已知椭球面的轴与坐标轴重合,且过椭圆与点,则这个椭球面的方程为.
14.俄国数学家切比雪夫是研究直线逼近函数理论的先驱.对定义在非空集合I上的函数,以及函数,切比雪夫将函数,的最大值称为函数与的“偏差”.若,,则函数与的“偏差”取得最小值时,m的值为.四、解答题(本题共5小题,共77分,其中15题13分,16题15分,17题15分,18题17分,19题17分,解答应写出文字说明、证明过程或演算步骤)15.如果n项有穷数列满足,,…,,即,则称有穷数列为“对称数列”.(1)设数列是项数为7的“对称数列”,其中成等差数列,且,依次写出数列的每一项;(2)设数列是项数为(且)的“对称数列”,且满足,记为数列的前项和.①若,,…,构成单调递增数列,且.当为何值时,取得最大值?②若,且,求的最小值.16.在高等数学中,我们将在处可以用一个多项式函数近似表示,具体形式为:(其中表示的n次导数),以上公式我们称为函数在处的泰勒展开式.当时泰勒展开式也称为麦克劳林公式.比如在处的麦克劳林公式为:,由此当时,可以非常容易得到不等式请利用上述公式和所学知识完成下列问题:(1)写出在处的泰勒展开式.(2)若,恒成立,求a的范围;(参考数据)(3)估计的近似值(精确到)17.正整数集,其中.将集合拆分成个三元子集,这个集合两两没有公共元素.若存在一种拆法,使得每个三元子集中都有一个数等于其他两数之和,则称集合是“三元可拆集”.(1)若,判断集合是否为“三元可拆集”,若是,请给出一种拆法;若不是,请说明理由;(2)若,证明:集合不是“三元可拆集”;(3)若,是否存在使得集合是“三元可拆集”,若存在,请求出的最大值并给出一种拆法;若不存在,请说明理由.18.已知数列满足,数列满足,.(1)求,的通项公式;(2)定义:已知数列,,当时,称为“4一偶数项和整除数列”.(i)计算,,其中,.(ii)若为“4-偶数项和整除数列”,求的最小值.19.“对称性”是一个广义的概念,包含“几何对称性”、“置换对称性”等范畴,是数学之美的重要体现.假定以下各点均在第一象限,各函数的定义域均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024事业单位聘用合同的法律规制研究
- 2024年光通信设备研发与生产合同
- 2024天然气运输合同
- 2024个人借款合同模板可打印范例
- 2024工程执行三方合作伙伴承包合同版
- 2024年度智能家居系统设计与集成合同标的3篇
- 二零二四年度学校物业管理合同:特殊教育学校与物业管理公司的协议
- 2024年度国际足球赛事赞助与合作合同2篇
- 全新2024学校科研项目外包合同
- 2024年充电桩设备融资居间服务合同版B版
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 浙江省杭州市上城区2023-2024学年九年级上学期期末考试科学试题
- 2024年典型事故案例警示教育手册15例
- 船舶风险辩识、评估及管控须知
- 减资专项审计报告
- 投标流程及管理制度
- 机场现场指挥培训副本ppt课件
- 章质谱法剖析PPT课件
- 项目负责制管理办法
- 加强高含硫气田开采安全管理工作的建议
- 2020-2021学年新北师大版高中英语必修一同步教案:Unit 3 Lesson 3 Memories of Christmas 教案
评论
0/150
提交评论