第13讲 圆锥曲线中的定点、定直线问题(学生版)-2025版高中数学一轮复习考点帮_第1页
第13讲 圆锥曲线中的定点、定直线问题(学生版)-2025版高中数学一轮复习考点帮_第2页
第13讲 圆锥曲线中的定点、定直线问题(学生版)-2025版高中数学一轮复习考点帮_第3页
第13讲 圆锥曲线中的定点、定直线问题(学生版)-2025版高中数学一轮复习考点帮_第4页
第13讲 圆锥曲线中的定点、定直线问题(学生版)-2025版高中数学一轮复习考点帮_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Page圆锥曲线中的定点、定直线问题(2类核心考点精讲精练)1.5年真题考点分布5年考情考题示例考点分析关联考点2023年新Ⅱ卷,第21题,12分双曲线中的定直线问题直线的点斜式方程及辨析根据a、b、c求双曲线的标准方程2023年全国乙卷(文科),第21题,12分椭圆中的定点问题根据离心率求椭圆的标准方程2022年全国乙卷(文科),第21题,12分椭圆中的直线过定点问题根据圆过的点求标准方程2021年新Ⅱ卷,第20题,12分椭圆中的直线过定点问题根据离心率求椭圆的标准方程求椭圆中的弦长根据弦长求参数2023年全国甲卷(理科),第20题,12分椭圆中的直线过定点问题无2.命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题不定,难度中等或偏难,分值为5-17分【备考策略】1.理解、掌握圆锥曲线的定点问题及其相关计算2.理解、掌握圆锥曲线的定直线问题及其相关计算【命题预测】本节内容是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习考点一、圆锥曲线中的定点问题1.(2022·全国·高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.(1)求E的方程;(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.2.(2020·全国·高考真题)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.3.(2019·全国·高考真题)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.(2019·北京·高考真题)已知椭圆的右焦点为,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.5.(山东·高考真题)已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.(Ⅰ)求的方程;(Ⅱ)若直线,且和有且只有一个公共点,(ⅰ)证明直线过定点,并求出定点坐标;(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.1.(2024·浙江温州·模拟预测)已知椭圆:,左右顶点分别是,,椭圆的离心率是.点是直线上的点,直线与分别交椭圆于另外两点,.(1)求椭圆的方程.(2)若,求出的值.(3)试证明:直线过定点.2.(2024·江西鹰潭·模拟预测)已知椭圆的左、右焦点分别是,,且椭圆过点.(1)求椭圆C的方程;(2)过的左焦点作弦,这两条弦的中点分别为,若,证明:直线过定点.3.(2024·福建泉州·模拟预测)已知椭圆:的离心率为,左、右焦点分别为,,焦距为2,点为椭圆上的点.(1)求椭圆的方程;(2)设点A,B在椭圆上,直线PA,PB均与圆:相切,证明:直线AB过定点.4.(2024·湖南邵阳·三模)已知椭圆:的离心率为,右顶点与的上,下顶点所围成的三角形面积为.(1)求的方程.(2)不过点的动直线与交于,两点,直线与的斜率之积恒为.(i)证明:直线过定点;(ii)求面积的最大值.5.(2024·河南周口·模拟预测)已知椭圆的焦距为2,不经过坐标原点且斜率为1的直线与交于P,Q两点,为线段PQ的中点,直线的斜率为.(1)求椭圆的方程;(2)设,直线PB与的另一个交点为,直线QB与的另一个交点为,其中,均不为椭圆的顶点,证明:直线MN过定点.6.(2024·重庆渝中·模拟预测)已知椭圆的离心率为,点在上.(1)求椭圆的方程;(2)过点的直线交椭圆于两点(异于点),过点作轴的垂线与直线交于点,设直线的斜率分别为.证明:(i)为定值;(ii)直线过线段的中点.考点二、圆锥曲线中的定直线问题1.(2023·全国·高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.2.(安徽·高考真题)设椭圆过点,且左焦点为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上3.(2024·陕西铜川·模拟预测)已知椭圆C:的右顶点为,离心率为,过点的直线l与C交于M,N两点.(1)若C的上顶点为B,直线BM,BN的斜率分别为,,求的值;(2)过点M且垂直于x轴的直线交直线AN于点Q,证明:线段MQ的中点在定直线上.4.(2024·北京·三模)已知椭圆的短轴长为,左、右顶点分别为,过右焦点的直线交椭圆于两点(不与重合),直线与直线交于点.(1)求椭圆的方程;(2)求证:点在定直线上.5.(2024·山西临汾·二模)已知椭圆的离心率为,点在上.(1)求的方程;(2)过点的直线交于P,Q两点,过点作垂直于轴的直线与直线AQ相交于点,证明:线段PM的中点在定直线上.1.(2024·贵州毕节·三模)在平面直角坐标系中,O为坐标原点,,动点P满足,设点P的轨迹为曲线.(1)求曲线的方程;(2)过点的直线l与曲线在y轴右侧交于不同的两点M,N,在线段MN上取异于点M,N的点D,满足.证明:点D在定直线上.2.(2024高三下·河南·专题练习)动点与定点的距离和它到定直线的距离的比是2,记动点的轨迹为曲线.(1)求的方程;(2)过的直线与交于两点,且,若点满足,证明:点在一条定直线上.3.(2024·贵州遵义·一模)已知双曲线(,)的左、右焦点分别为,,直线与的左、右两支分别交于,两点,四边形为矩形,且面积为.(1)求四边形的外接圆方程;(2)设,为的左、右顶点,直线过点与交于,两点(异于,),直线与交于点,证明:点在定直线上.4.(2024·湖南长沙·三模)已知抛物线,过点的直线与交于不同的两点.当直线的倾斜角为时,.(1)求的方程;(2)在线段上取异于点的点,且满足,试问是否存在一条定直线,使得点恒在这条定直线上?若存在,求出该直线;若不存在,请说明理由.5.(2024·河北保定·二模)已知抛物线的焦点为,过作互相垂直的直线,分别与交于和两点(A,D在第一象限),当直线的倾斜角等于时,四边形的面积为.(1)求C的方程;(2)设直线AD与BE交于点Q,证明:点在定直线上.1.(2024·江西九江·二模)已知双曲线的离心率为,点在上.(1)求双曲线的方程;(2)直线与双曲线交于不同的两点,,若直线,的斜率互为倒数,证明:直线过定点.2.(2024·浙江杭州·二模)已知是椭圆的左,右顶点,点与椭圆上的点的距离的最小值为1.(1)求点的坐标.(2)过点作直线交椭圆于两点(与不重合),连接,交于点.(ⅰ)证明:点在定直线上;(ⅱ)是否存在点使得,若存在,求出直线的斜率;若不存在,请说明理由.3.(2024·辽宁·二模)平面直角坐标系xOy中,面积为9的正方形的顶点分别在x轴和y轴上滑动,且,记动点P的轨迹为曲线.(1)求的方程;(2)过点的动直线l与曲线交于不同的两点时,在线段上取点Q,满足.试探究点Q是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.4.(2024·江西·二模)已知椭圆的左、右焦点分别为,,右顶点为,且,离心率为.(1)求椭圆的标准方程;(2)已知,是上两点(点,不同于点),直线,分别交直线于,两点,若,证明:直线过定点.5.(2024·广西·二模)已知抛物线,过点作直线交抛物线C于A,B两点,过A,B两点分别作抛物线C的切线交于点P.(1)证明:P在定直线上;(2)若F为抛物线C的焦点,证明:.6.(2024·湖南娄底·一模)若抛物线的方程为,焦点为,设是抛物线上两个不同的动点.(1)若,求直线的斜率;(2)设中点为,若直线斜率为,证明在一条定直线上.7.(2024·山东潍坊·三模)在平面直角坐标系中,为坐标原点,为直线上一点,动点满足,.(1)求动点的轨迹的方程;(2)若过点作直线与交于不同的两点,点,过点作轴的垂线分别与直线交于点.证明:为线段的中点.8.(2024·山西太原·二模)已知抛物线C:()的焦点为F,过点且斜率为1的直线经过点F.(1)求抛物线C的方程;(2)若A,B是抛物线C上两个动点,在x轴上是否存在定点M(异于坐标原点O),使得当直线AB经过点M时,满足?若存在,求出点M的坐标;若不存在,请说明理由.9.(2024·山西·一模)已知双曲线经过点,其右焦点为,且直线是的一条渐近线.(1)求的标准方程;(2)设是上任意一点,直线.证明:与双曲线相切于点;(3)设直线与相切于点,且,证明:点在定直线上.10.(2024·陕西安康·模拟预测)已知双曲线的左、右顶点分别是,直线与交于两点(不与重合),设直线的斜率分别为,且.(1)判断直线是否过轴上的定点.若过,求出该定点;若不过,请说明理由.(2)若分别在第一和第四象限内,证明:直线与的交点在定直线上.11.(2024·河南南阳·模拟预测)已知双曲线的离心率为,点是上一点.(1)求的方程;(2)设是直线上的动点,分别是的左、右顶点,且直线分别与的右支交于两点(均异于点),证明:直线过定点.12.(2024·黑龙江双鸭山·模拟预测)已知双曲线的焦距为,点在C上.(1)求C的方程;(2)直线与C的右支交于两点,点与点关于轴对称,点在轴上的投影为.①求的取值范围;②求证:直线过点.13.(2024·陕西安康·模拟预测)已知椭圆的离心率为的上顶点和右顶点分别为,点的面积为2.(1)求的方程;(2)过点且斜率存在的直线与交于两点,过点且与直线平行的直线与直线的交点为,证明:直线过定点.14.(2024·河南郑州·三模)已知椭圆的左右顶点分别为和,离心率为,且经过点,过点作垂直轴于点.在轴上存在一点(异于),使得.(1)求椭圆的标准方程;(2)判断直线与椭圆的位置关系,并证明你的结论;(3)过点作一条垂直于轴的直线,在上任取一点,直线和直线分别交椭圆于两点,证明:直线经过定点.15.(2024·河北邯郸·模拟预测)动点M到定点的距离与它到直线的距离之比为,记点M的轨迹为曲线.若为上的点,且.(1)求曲线的轨迹方程;(2)已知,,直线交曲线于两点,点在轴上方.①求证:为定值;②若,直线是否过定点,若是,求出该定点坐标,若不是,请说明理由.1.(陕西·高考真题)已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是的角平分线,证明直线l过定点.2.(山东·高考真题)已知动圆过定点,且与直线相切,其中.(1)求动圆圆心的轨迹的方程;(2)设、是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当、变化且,证明直线恒过定点,并求出该定点的坐标.3.(广东·高考真题)已知椭圆的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在右准线l上,且轴,求证:直线经过线段的中点.4.(山东·高考真题)平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.5.(山东·高考真题)已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1.(I)求椭圆C的标准方程;(I

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论