版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥化市青冈县县第一中学2024年高考模拟最后十套:数学试题(八)考前提分仿真卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.42.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9 B.0.85 C.0.75 D.0.53.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.44.已知纯虚数满足,其中为虚数单位,则实数等于()A. B.1 C. D.25.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A. B. C. D.6.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.7.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.208.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.19.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离10.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.811.的展开式中的系数为()A.-30 B.-40 C.40 D.5012.设复数z=,则|z|=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则展开式的系数为__________.14.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.15.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:①为的重心;②;③当时,平面;④当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是________________.16.若函数()的图象与直线相切,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.20.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).21.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.22.(10分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题2、A【解析】
计算,代入回归方程可得.【详解】由题意,,∴,解得.故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.3、D【解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.4、B【解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.5、C【解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.6、A【解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.7、C【解析】
利用等差通项,设出和,然后,直接求解即可【详解】令,则,,∴,,∴.【点睛】本题考查等差数列的求和问题,属于基础题8、B【解析】
,选B.9、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r10、C【解析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.11、C【解析】
先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.12、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先根据定积分求出的值,再用二项展开式公式即可求解.【详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.14、-1【解析】
讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣14,当且仅当﹣a,即a=﹣1时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣1;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣1.故答案为:﹣1.【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.15、①②③【解析】
①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的;②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确;③若设,则由可得,然后对应边成比例,可解,所以③正确;④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以④错误.【详解】因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以①正确;由平面,可知平面平面,记,由,可得平面平面,则,所以②正确;若平面,则,设由得,易得,由,则,由得,,解得,所以③正确;当与重合时,最大,为棱长为的正四面体,其外接球半径,则球,所以④错误.故答案为:①②③【点睛】此题考查立体几何中的垂直、平行关系,求几何体的体积,考查空间想象能力和推理能力,属于难题.16、2【解析】
设切点由已知可得,即可解得所求.【详解】设,因为,所以,即,又,.所以,即,.故答案为:.【点睛】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】
证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.18、(1);(2)【解析】
方案一:(1)根据等差数列的通项公式及前n项和公式列方程组,求出和,从而写出数列的通项公式;(2)由第(1)题的结论,写出数列的通项,采用分组求和、等比求和公式以及裂项相消法,求出数列的前项和.其余两个方案与方案一的解法相近似.【详解】解:方案一:(1)∵数列都是等差数列,且,,解得,综上(2)由(1)得:方案二:(1)∵数列都是等差数列,且,解得,.综上,(2)同方案一方案三:(1)∵数列都是等差数列,且.,解得,,.综上,(2)同方案一【点睛】本题考查了等差数列的通项公式、前n项和公式的应用,考查了分组求和、等比求和及裂项相消法求数列的前n项和,属于中档题.19、(1)(2)证明见解析【解析】
(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.20、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】
(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,,,当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,,当时,,在上单调递增,即函数的值域为;当时,,在上单调递减,即函数的值域为;当时,易得时,,在上单调递增,时,,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,,最小值;当,,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【点睛】本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.21、(Ⅰ)(Ⅱ)证明见解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,对分奇偶讨论,即可得;(Ⅱ)由(Ⅰ)得,用错位相减法求出,运用分析法证明即可.【详解】(Ⅰ),当为奇数时,,又由,得,当为偶数时,,又由a2=3,得,;(Ⅱ)由(1)得,则①②①-②可得:,,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算求解与逻辑推理能力.22、(1)证明见解析(2)【解析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国际多式联运货物运输合同:协调与配合
- 2024年专业土石方物流运输服务协议版B版
- 全新智能教育平台开发合同(2024版)
- 2024年度汕头市服装设计公司委托加工合同3篇
- 2024年专业知识产权质押融资协议范本版B版
- 2024年商业合作框架合同范本版B版
- 2024混凝土搅拌车租赁合同混凝土搅拌车租赁合同模板
- 2024个人汽车贷款担保合同
- 2024服务员雇佣合同书
- 2024APP项目UI设计合同
- 四分制验布标准.xls
- 1639.18山东省重点工业产品用水定额第18部分:金属矿采选业重点工业产品
- 叉车自行检查报告
- 现在进行时和过去进行时中考专项复习.ppt
- 初中生数学探究性学习能力培养略谈
- 控制点复测方案
- 截流验收施工管理工作报告
- 色彩构成—明度九调作业要求
- 火灾自动报警系统操作规程全文
- 教育信息化十年发展规划
- 北京四中网校四重五步学习法
评论
0/150
提交评论