人教版八年级上册数学期末考试试卷含答案_第1页
人教版八年级上册数学期末考试试卷含答案_第2页
人教版八年级上册数学期末考试试卷含答案_第3页
人教版八年级上册数学期末考试试卷含答案_第4页
人教版八年级上册数学期末考试试卷含答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级上册数学期末考试试卷一、选择题。(每小题只有一个正确答案)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.据网络数据统计,2017年惠阳区现有人口约615000人,615000这个数字用科学记数法表示应为()A.61.5×104 B.6.15×105 C.0.615×106 D.6.15×10﹣53.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=34.下列计算正确的是()A.a6÷a2=a4 B.(2a2)3=6a6C.(a2)3=a5 D.(a+b)2=a2+b25.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=4,则点P到边OA的距离是()A.1 B.2 C. D.47.计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1 B.﹣2x2﹣1 C.﹣2x2+1 D.﹣2x28.如图,△ABC和△A′B'C′关于直线l对称,下列结论中,错误的是()A.△ABC≌△A′B′C′ B.∠BAC'=∠B′ACC.l垂直平分CC′ D.直线BC和B′C′的交点不在直线l上9.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=8,则CD等于()A.3 B.4 C.5 D.610.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE二、填空题11.分解因式:2x2﹣8=_______12.当分式的值为0时,x的值为_______________.13.等腰三角形的两条边长为2和5,则该等腰三角形的周长为_________.14.计算:()-2-(-1)0=__________.15.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=_____.16.如图,在△ABC中,点D是BC的中点,连接AD,E,F分别是AD和AD延长线上的点.且DE=DF,连接BF,CE,下列说法中:①△ABD和△ACD的面积相等;②∠BAD=∠CAD;③BF∥CE;④CE=BF,其中,正确的说法有__________(填序号)三、解答题17.化简:(1﹣)•.18.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.19.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.20.(1)运用多项式乘法,计算下列各题:①(x+2)(x+3)=_____②(x+2)(x﹣3)=_____③(x﹣3)(x﹣1)=_____(2)若:(x+a)(x+b)=x2+px+q,根据你所发现的规律,直接填空:p=_____,q=_____.(用含a、b的代数式表示)21.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:(1)△BED≌△CFD;(2)AD平分∠BAC.22.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.23.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1_____,B1_____,C1_____(2)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是_____.24.惠阳区某中学2016年在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)2017年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?25.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.参考答案1.B【分析】根据轴对称图形的概念:一个图形沿某条直线折叠后,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴,据此逐项判断即可.【详解】解:选项A、C、D中图形都是轴对称图形,选项B中图形不是轴对称图形,故选B.【点睛】本题考查轴对称图形的概念,理解轴对称图形的概念,寻找对称轴是解答的关键.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将615000用科学记数法表示为:6.15×105.故选B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C【详解】试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.4.A【分析】根据同底数幂相除,底数不变指数相减;积的乘方,把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;对各选项分析判断后利用排除法求解.【详解】解:A、a6÷a2=a4,故A正确;B、(2a2)3=8a6,故B错误;C、(a2)3=a6,故C错误;D、(a+b)2=a2+2ab+b2,故D错误.故选A.【点睛】本题考查同底数幂的除法、幂的乘方与积的乘方、完全平方公式,熟练掌握运算性质和法则是解题的关键.5.C【详解】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=7.考点:多边形的内角和定理.6.D【分析】作PE⊥OA于E,根据角平分线的性质解答.【详解】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=4,故选D.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.C【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.8.D【解析】【分析】根据轴对称的性质求解.【详解】解:A、△ABC和△A′B'C′关于直线l对称,△ABC≌△A′B′C′,选项A正确;B、△ABC和△A′B'C′关于直线l对称,∠BAC'=∠B′AC,选项B正确;C、△ABC和△A′B'C′关于直线l对称,l垂直平分CC',选项C正确;D、△ABC和△A′B'C′关于直线l对称,直线BC和B′C′的交点一定在直线l上,选项D错误.故选:D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.9.B【详解】∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=8,∴BD=8,∴CD=BD=4.故选:B.10.C【详解】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11.2(x+2)(x﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.12.2【解析】试题分析:分式的值为0时有x-2=0,所以x=2.考点:分式的值为零的条件.13.12【分析】因为已知长度为2和5两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【详解】解:当5为底时,其它两边都为2,∵2+2<5,∴不能构成三角形,故舍去,当5为腰时,其它两边为2和5,5、5、2可以构成三角形,∴周长为5+5+2=12.故答案为:12.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.1【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【详解】解:原式=2﹣1=1.故答案为1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.15.15°.【分析】先根据线段垂直平分线的性质得出DA=DB,∠AED=∠BED=90,即可得出∠A=∠ABD,∠BDE=∠ADE,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD,∠ABC的度数,即可求出∠DBC的度数.【详解】∵AB的垂直平分线交AC于D,交AB于E,∴DA=DB,∠AED=∠BED=90,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40,∴∠A=∠ABD=90=50,∵AB=AC,∴∠ABC=,∴∠DBC=∠ABC-∠ABD=15.故答案为15.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.16.①③【解析】【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.【详解】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS),∴∠F=∠DEC,∴BF∥CE,故③正确;∵△BDF≌△CDE,∴CE=BF,故④错误,正确的结论为:①③,故答案为①③.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.17.x+1【分析】先计算括号内分式的减法,再约分即可得.【详解】解:原式=(﹣)•=•=x+1.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握熟练掌握分式的混合运算顺序和运算法则.18.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.19.见解析【分析】(1)根据角平分线的作法求出角平分线BD;(2)证明∠C=∠CBD即可;【详解】解:(1)射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠CBD=∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.【点睛】本题考查作图-基本作图,等腰三角形的判断等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.20.x2+5x+6x2﹣x﹣6x2﹣4x+3a+bab【分析】(1)利用多项式乘多项式法则计算后,再合并同类项即可得;(2)利用多项式乘多项式法则计算后,再合并同类项即可得.【详解】(1)①(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,②(x+2)(x﹣3)=x2﹣3x+2x﹣6=x2﹣x﹣6,③(x﹣3)(x﹣1)=x2﹣x﹣3x+3=x2﹣4x+3,故答案为x2+5x+6、x2﹣x﹣6、x2﹣4x+3;(2)∵(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,∴x2+(a+b)x+ab=x2+px+q,∴p=a+b、q=ab,故答案为a+b、ab.【点睛】本题主要考查多项式乘多项式,解题的关键是熟练掌握多项式乘多项式的运算法则与合并同类项法则.21.见解析【分析】(1)可由HL得到Rt△BED≌Rt△CFD,得出AB=AC,(2)由三线合一的性质即可得到AD平分∠BAC.【详解】(1)∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),(2)∵Rt△BED≌Rt△CFD,∴∠B=∠C,∴AB=AC,又∵D为BC的中点,∴AD平分∠BAC.(三线合一).【点睛】本题主要考查了全等三角形的判定及性质以及三角形的三线合一的性质问题,能够掌握并熟练运用.22.(1)115°;(2)证明见解析【分析】(1)根据∠ABF=∠FBD+∠BDF,想办法求出∠FBD,∠BDF即可;(2)只要证明AB=AC,∠ABC=60°即可;【详解】(1)∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣60°﹣70°=50°,∵BE平分∠ABC,∴∠FBD=∠ABC=25°,∵AD⊥BC,∴∠BDF=90°,∴∠AFB=∠FBD+∠BDF=115°.(2)证明:∵∠ABE=30°,BE平分∠ABC,∴∠ABC=60°,∵BD=DC,AD⊥BC,∴AB=AC,∴△ABC是等边三角形.【点睛】本题考查等边三角形的判定、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(﹣1,1)(﹣4,2)(﹣3,4)(2,0)【分析】(1)作出A、B、C关于y轴的对称点A′、B′、C′即可;(2)存在.设Q(0,m),构建方程即可解决问题;(3)如图作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小;【详解】(1)△A1B1C1如图所示,A1(﹣1,1),B1(﹣4,2),C1(﹣3,4).故答案为(﹣1,1),(﹣4,2),(﹣3,4).(2)存在.设Q(0,m),∵S△ABC=9﹣×2×3﹣×3×1﹣×1×2=,∴S△QAC=,∴|m|•3﹣•|m|•1=,∴m=±,∴Q(0,)或(0,﹣).(3)如图作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小,此时P(2,0).【点睛】本题考查轴对称-最短问题、三角形的面积、坐标与图形变化等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)购买一个甲种足球需50元,一个乙种足球需70元;(2)该学校购买这批足球所用金额不会超过预算.【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,=×2,解得,x=50,经检验,x=50是原分式方程的解,∴x+20=70,即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论