版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
装订线装订线PAGE2第1页,共3页河北环境工程学院《标志设计》
2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像2、在进行图像配准(ImageRegistration)时,即对齐两幅或多幅图像,假设我们要将不同时间拍摄的同一地区的卫星图像进行配准,由于地形变化和拍摄角度的差异,以下哪个因素可能对配准精度产生最大影响?()A.图像的分辨率B.选择的特征点数量C.图像的灰度值D.地理坐标信息的准确性3、在计算机视觉中,目标检测是一项关键任务。假设要开发一个能够在复杂的城市交通场景中准确检测出各种车辆类型的系统,需要考虑车辆的不同尺寸、形状和姿态,以及光照、阴影和遮挡等因素的影响。以下哪种目标检测算法在处理这种复杂场景时具有较好的性能和鲁棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO4、在计算机视觉中,目标检测是一项重要任务。假设要在一张包含众多物体的复杂图像中准确检测出不同类型的车辆,例如轿车、卡车和摩托车。图像中的车辆可能具有不同的颜色、大小和姿态,而且背景也较为复杂。为了实现高精度的车辆检测,以下哪种方法通常被认为是最有效的?()A.基于传统图像处理技术,如边缘检测和形态学操作B.使用基于深度学习的目标检测算法,如FasterR-CNNC.采用简单的模板匹配方法,根据预先定义的车辆模板进行匹配D.对图像进行全局特征提取,然后基于这些特征进行分类5、计算机视觉在文物保护和修复中的应用逐渐增多。假设要对一幅古老的绘画进行数字化修复和增强,以下关于颜色恢复的挑战,哪一项是最为显著的?()A.由于年代久远,原画作的颜色信息缺失严重B.不同区域的颜色褪色程度不一致,难以统一恢复C.缺乏对原画作创作时所用颜料的了解,难以准确还原颜色D.修复过程中可能引入新的颜色偏差,影响修复效果6、在图像分类任务中,深度学习模型取得了显著的成果。假设要对一组包含不同动物的图像进行分类,以下关于图像分类模型的描述,正确的是:()A.模型的层数越多,分类准确率一定越高B.数据增强技术,如旋转、裁剪等,对模型的性能提升没有帮助C.结合多种特征提取方法和分类器,可以提高图像分类的准确性和鲁棒性D.图像分类模型不需要考虑图像的空间信息,只关注像素值的统计特征7、计算机视觉中的光流估计是计算图像中像素的运动信息。以下关于光流估计的叙述,不正确的是()A.光流估计可以用于视频中的运动分析、目标跟踪和动作识别等任务B.基于深度学习的光流估计方法在精度和速度上都有了很大的提升C.光流估计只对匀速运动的物体有效,对于复杂的非匀速运动估计不准确D.光流估计的结果可以为后续的计算机视觉任务提供重要的运动线索8、在计算机视觉的行人检测任务中,假设要在一个拥挤的街道场景中准确检测出行人,场景中存在光照变化、人群遮挡和复杂背景。以下哪种特征表示方法在这种情况下可能更具鲁棒性?()A.基于形状的特征,如行人的轮廓B.基于颜色的特征,如行人衣服的颜色C.基于深度学习的特征,通过卷积神经网络自动学习D.不提取任何特征,直接对原始图像进行检测9、计算机视觉中的图像风格迁移是一项有趣的任务。假设要将一幅油画的风格应用到一张照片上,以下关于模型训练的要点,哪一项是不正确的?()A.学习油画和照片的特征表示,找到风格和内容的分离方式B.只关注风格的迁移,不考虑照片原始内容的保留C.采用对抗训练,使生成的图像在风格和内容上达到平衡D.调整模型参数,控制风格迁移的强度和效果10、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊11、当进行图像的去雾处理时,假设要去除图像中由于雾气导致的模糊和低对比度。以下哪种方法可能更有效?()A.基于物理模型的去雾方法,估计大气光和透射率B.对图像进行简单的对比度增强C.不进行去雾处理,保留有雾的效果D.随机调整图像的亮度和饱和度12、计算机视觉中的图像超分辨率重建旨在提高图像的分辨率。假设要将一张低分辨率的卫星图像重建为高分辨率图像,以下关于模型训练的挑战,哪一项是最为突出的?()A.缺乏足够的高分辨率卫星图像数据用于训练B.模型的训练时间过长,难以在短时间内得到结果C.难以评估重建后的图像质量,没有明确的标准D.计算资源需求过大,普通计算机难以承受13、在计算机视觉的图像去雾任务中,假设要去除一张有雾图像中的雾气,恢复清晰的场景。以下关于图像去雾方法的描述,正确的是:()A.基于物理模型的去雾方法需要准确估计雾的浓度和传播参数,否则效果不佳B.基于深度学习的去雾方法能够自动学习雾的特征,但对浓雾的处理能力有限C.图像去雾后,颜色和对比度会发生严重失真,影响视觉效果D.所有的图像去雾方法都能够在各种复杂的雾天条件下取得理想的效果14、在计算机视觉的图像生成任务中,假设要生成具有真实感的自然图像。以下关于图像生成方法的描述,正确的是:()A.生成对抗网络(GAN)能够生成逼真的图像,但训练过程不稳定,容易模式崩溃B.变分自编码器(VAE)生成的图像多样性好,但真实感不如GAN生成的图像C.自回归模型在图像生成中效率高,能够快速生成高质量的图像D.所有的图像生成方法都能够生成与真实世界完全一致的图像15、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行匹配和对齐。以下关于图像配准的叙述,不正确的是()A.图像配准需要找到图像之间的对应点或特征,然后进行变换和对齐B.图像配准在医学图像分析、遥感图像处理和三维重建等领域有着广泛的应用C.图像配准的精度和鲁棒性受到图像质量、噪声和几何变形等因素的影响D.图像配准是一个简单的过程,不需要复杂的算法和优化16、在计算机视觉的图像增强处理中,目的是改善图像的质量和可读性。假设我们要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,哪一项是不正确的?()A.直方图均衡化可以通过调整图像的灰度分布,增强图像的对比度B.基于Retinex理论的方法可以分离图像的光照和反射成分,从而改善图像的视觉效果C.图像增强算法可以在不增加噪声的情况下,显著提高图像的亮度和清晰度D.不同的图像增强方法适用于不同类型的图像,需要根据具体情况选择合适的方法17、计算机视觉在医学影像分析中的应用有助于辅助医生进行诊断和治疗。假设要分析一张脑部CT图像,以下关于医学影像分析中的计算机视觉应用的描述,哪一项是不正确的?()A.可以通过分割脑组织、检测病变区域等方法,为医生提供定量的分析结果B.深度学习模型能够自动学习医学影像中的特征,辅助医生发现潜在的疾病C.计算机视觉在医学影像分析中的应用需要遵循严格的医学伦理和法规D.计算机视觉系统可以完全替代医生的诊断,不需要医生的进一步审查和判断18、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是19、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下哪种方法可能需要大量的标注数据进行训练?()A.基于规则的方法B.基于深度学习的方法C.基于背景减除的方法D.基于帧差法的方法20、在计算机视觉中,图像分类是一项重要任务。假设我们要对大量的动物图片进行分类,将其分为猫、狗、鸟等类别。以下关于图像分类方法的描述,哪一项是不准确的?()A.基于深度学习的卷积神经网络(CNN)在图像分类任务中表现出色,能够自动学习图像的特征B.传统的机器学习方法如支持向量机(SVM)在处理大规模图像数据时,性能通常不如深度学习方法C.图像分类只需要考虑图像的颜色和形状等低层次特征,高层语义信息对分类结果影响不大D.为了提高分类准确率,可以使用数据增强技术,如旋转、翻转、裁剪等操作来扩充数据集二、简答题(本大题共3个小题,共15分)1、(本题5分)解释计算机视觉中的手势识别技术。2、(本题5分)解释计算机视觉中的面部识别技术。3、(本题5分)简述计算机视觉在就业服务中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)某慈善晚会的邀请函设计温馨感人,运用感人的故事和温暖的色彩。请探讨邀请函在邀请嘉宾、传递慈善精神、营造温馨氛围方面的策略和效果,以及如何引发嘉宾的积极参与。2、(本题5分)分析某品牌的名片设计中的信息传达,探讨其如何通过简洁明了的设计和有效的信息传达,展示个人或企业的形象和专业度。3、(本题5分)研究一款特色的明信片设计,剖析其在画面内容、文字表达、印刷工艺等方面如何传递情感和地域特色,成为受欢迎
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度中医养生产品海外市场推广合同4篇
- 2025年度商业综合体承包转让合同范本4篇
- 2025年度养老机构场地租赁与养老服务分成管理合同3篇
- 2025年cfg桩基施工项目环境保护与生态修复合同3篇
- 2025年度智能家电维修个人劳务协议书4篇
- 2025年中国酚氨咖敏颗粒行业发展潜力分析及投资战略咨询报告
- 2025年度汽车租赁与二手车交易服务合同3篇
- 2025年温州家和物业管理有限公司招聘笔试参考题库含答案解析
- 2025年温州个人房屋买卖合同(含交易资金监管)3篇
- 二零二五版离婚协议书模板:离婚后子女抚养及财产分割专案协议2篇
- 氧气雾化吸入法
- 6月大学英语四级真题(CET4)及答案解析
- 气排球竞赛规则
- 电梯维修保养报价书模板
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
- GB/T 33141-2016镁锂合金铸锭
- 2023译林版新教材高中英语必修二全册重点短语归纳小结
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- 综合管廊工程施工技术概述课件
- 公积金提取单身声明
评论
0/150
提交评论