版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省宣化一中、张北一中2025届高三下学期第五次调研考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递减的充要条件是()A. B. C. D.2.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.23.已知复数满足,则=()A. B.C. D.4.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.6.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.7.已知向量,若,则实数的值为()A. B. C. D.8.已知,且,则在方向上的投影为()A. B. C. D.9.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心10.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.11.已知双曲线C:=1(a>0,b>0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为()A. B. C.2 D.+112.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,,若线段的垂直平分线与轴交点的横坐标为,则的值为_________.14.若,则=____,=___.15.假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.16.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)求直线的直角坐标方程与曲线的普通方程;(Ⅱ)已知点设直线与曲线相交于两点,求的值.19.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.20.(12分)在中,,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.21.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.22.(10分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.2、D【解析】
分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.3、B【解析】
利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.4、C【解析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.5、B【解析】
首先由三视图还原几何体,进一步求出几何体的棱长.【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.6、D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.7、D【解析】
由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.8、C【解析】
由向量垂直的向量表示求出,再由投影的定义计算.【详解】由可得,因为,所以.故在方向上的投影为.故选:C.【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.9、B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.10、D【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.11、B【解析】
以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),,.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.12、C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论.【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1.【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键.14、12821【解析】
令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.15、1【解析】
按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可.【详解】9元的支付有两种情况,或者,①当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;②当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;所以总的支付方式共有种.故答案为:1.【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题.做题时注意分类做到不重不漏,分步做到步骤完整.16、【解析】
设,,在中利用正弦定理得出关于的函数,从而可得的最小值.【详解】解:设,,则,,∴,在中,由正弦定理可得,即,∴,∴当即时,取得最小值.故答案为.【点睛】本题考查正弦定理解三角形的应用,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)详见解析;(II)2【解析】
(I)求导得到f'(x)=ex-a,讨论a≤0(II)f12=e-12a-5【详解】(I)f(x)=ex-ax当a≤0时,f'(x)=e当a>0时,f'(x)=ex-a=0,x=lna当x∈lna,+∞时,综上所述:a≤0时,fx在R上单调递增;a>0时,fx在-∞,ln(II)f(x)=ex-ax-bf12=现在证明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故当x∈0,+∞上时,x2+1f'x在x∈0,+∞上单调递增,故fx在0,12上单调递减,在1综上所述:a+5b的最大值为【点睛】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.18、(Ⅰ)直线的直角坐标方程为;曲线的普通方程为;(Ⅱ).【解析】
(I)利用参数方程、普通方程、极坐标方程间的互化公式即可;(II)将直线参数方程代入抛物线的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】由可得直线的直角坐标方程为由曲线的参数方程,消去参数可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数).将直线的参数方程代入曲线的普通方程,并整理得.设是方程的两根,则有.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.19、(1),;(2).【解析】
(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,,则,,再根据,即,利用韦达定理求解.【详解】(1)把代入,得,由(为参数),消去得,∴曲线的直角坐标方程和直线的普通方程分别是,.(2)将(为参数)代入得,设,两点对应的参数为,,则,,由得,所以,即,所以,而,解得.【点睛】本题主要考查参数方程、极坐标方程、直角坐标方程的转化和直线参数方程的应用,还考查了运算求解的能力,属于中档题.20、(1)1;(2)5.【解析】
(1)由同角三角函数关系求得,再由两角差的正弦公式求得,最后由正弦定理构建方程,求得答案.(2)在中,由正弦定理构建方程求得AB,再由任意三角形的面积公式构建方程求得BC,最后由余弦定理构建方程求得AC.【详解】(1)据题意,,且,所以.所以.在中,据正弦定理可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进货合同范本
- 2024年度店面防盗系统施工合同2篇
- 救助合同模板协议书
- 基于区块链的仓库货物追踪系统合同04
- 2024年度个人租赁餐厅场地合同3篇
- 2024年度广告合作合同的广告形式与合作期限3篇
- 土地承包合同模版完整版
- 电子商务平台2024年度物流配送服务合同8篇
- 废旧物资购销合同范本
- 5-7-Dihydroxy-4H-chromen-4-one-3-O-β-D-xylopyranoside-生命科学试剂-MCE
- 中职开设专业方案
- 新能源汽车的市场价格变化趋势
- 护理职业生涯规划书成长赛道
- 2024年重庆市优质企业梯度培育政策解读学习培训课件资料(专精特新 专精特新小巨人中小企业 注意事项)
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 三体二黑暗森林
- 2023年1月福建高中学业水平合格性考试语文试卷真题(含答案)
- 2024-2023-2024年中考语文三年真题分类汇编(全国版)7病句 试卷(含答案解析)
- 设备撞件不良分析报告
- 呼吸科进修总结汇报
- 小学语文新课程标准解读课件
评论
0/150
提交评论