北京工业大学《标志与符号设计》2021-2022学年第一学期期末试卷_第1页
北京工业大学《标志与符号设计》2021-2022学年第一学期期末试卷_第2页
北京工业大学《标志与符号设计》2021-2022学年第一学期期末试卷_第3页
北京工业大学《标志与符号设计》2021-2022学年第一学期期末试卷_第4页
北京工业大学《标志与符号设计》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页北京工业大学《标志与符号设计》

2021-2022学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的行人重识别任务中,需要在不同摄像头拍摄的图像中识别出同一个行人。假设我们要在一个大型商场的监控系统中实现行人重识别,以下哪种特征和模型能够提高识别的准确率和跨摄像头的泛化能力?()A.基于颜色和纹理的特征B.基于深度学习的全局特征和度量学习C.基于形状和轮廓的特征D.基于步态和姿势的特征2、在计算机视觉的图像风格迁移任务中,将一张图像的风格应用到另一张图像上。假设要将一幅油画的风格迁移到一张照片上,以下关于图像风格迁移方法的描述,正确的是:()A.基于手工特征提取和风格转换的方法能够实现自然逼真的风格迁移B.深度学习中的生成对抗网络(GAN)在风格迁移中无法生成多样化的风格效果C.图像的内容和风格可以完全独立地进行处理,互不影响D.考虑图像的局部和全局特征以及语义信息能够提升风格迁移的质量3、目标检测是计算机视觉中的重要任务之一。假设要在一张城市街道的图像中检测出所有的行人和车辆,以下关于目标检测算法的描述,正确的是:()A.基于传统的图像处理方法的目标检测算法在复杂场景中表现优于深度学习算法B.深度学习中的单阶段目标检测算法比两阶段算法速度快,但精度较低C.目标检测算法只需要关注目标的位置,不需要考虑目标的类别D.目标检测的准确率不受图像质量、光照条件和目标大小变化的影响4、在计算机视觉中,以下哪种技术常用于图像的超分辨率重建的上采样方法?()A.反卷积B.亚像素卷积C.最近邻插值D.以上都是5、在计算机视觉的图像修复任务中,恢复图像中缺失或损坏的部分。假设要修复一张老照片中缺失的部分,以下关于图像修复方法的描述,正确的是:()A.基于纹理合成的图像修复方法能够完美恢复复杂的结构和细节B.深度学习中的自编码器在图像修复中无法学习到有效的特征表示C.图像修复的结果不受缺失区域的大小和形状的影响D.结合先验知识和上下文信息的深度学习方法可以产生更合理和自然的修复效果6、在计算机视觉的图像检索任务中,根据用户提供的图像或特征在数据库中查找相似的图像。假设要从一个大型图像库中找到与给定图像相似的图片,以下关于图像检索方法的描述,正确的是:()A.基于图像的颜色和纹理特征进行检索能够满足所有的检索需求B.深度学习中的卷积神经网络提取的特征在图像检索中不如手工设计的特征有效C.考虑图像的语义信息和高层特征可以提高图像检索的准确性和相关性D.图像检索的速度和效率不受数据库大小和特征维度的影响7、计算机视觉在虚拟现实(VR)和增强现实(AR)中的应用可以提供更沉浸式的体验。假设要在VR环境中实时跟踪用户的头部运动并相应地更新场景,以下关于VR/AR计算机视觉应用的描述,正确的是:()A.简单的基于传感器的跟踪方法能够满足VR中高精度的头部运动跟踪需求B.计算机视觉在VR/AR中的应用主要关注图像生成,而不是跟踪和定位C.结合视觉特征提取和深度学习的头部运动跟踪算法可以实现低延迟和高精度的跟踪D.VR/AR环境中的光照条件和物体遮挡对计算机视觉算法的性能没有影响8、计算机视觉中的目标重识别任务旨在在不同的摄像头视角中识别出同一目标。假设要在一个大型商场的多个摄像头中寻找一个特定的人物。以下关于目标重识别的描述,哪一项是不准确的?()A.可以通过提取目标的特征,如颜色、形状和纹理,来进行重识别B.深度学习中的特征学习方法能够提高目标重识别的准确率C.目标重识别不受摄像头视角、光照和人物姿态变化的影响D.可以通过建立目标的特征库,快速在多个摄像头中进行匹配和搜索9、在三维计算机视觉中,重建物体的三维形状是一个重要任务。假设要从多视角的图像中重建一个建筑物的三维模型,以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法能够直接从两张图像中准确重建出物体的三维形状B.结构光方法在室外环境中比在室内环境中更适用C.多视图几何和深度学习相结合的方法可以提高三维重建的精度和完整性D.三维重建的结果不受图像拍摄角度和距离的影响10、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征11、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义12、计算机视觉在医学影像分析中的应用有助于辅助医生进行诊断和治疗。假设要分析一张脑部CT图像,以下关于医学影像分析中的计算机视觉应用的描述,哪一项是不正确的?()A.可以通过分割脑组织、检测病变区域等方法,为医生提供定量的分析结果B.深度学习模型能够自动学习医学影像中的特征,辅助医生发现潜在的疾病C.计算机视觉在医学影像分析中的应用需要遵循严格的医学伦理和法规D.计算机视觉系统可以完全替代医生的诊断,不需要医生的进一步审查和判断13、计算机视觉中的三维重建技术可以从多幅图像中恢复物体的三维形状。假设要对一个古老建筑进行三维重建。以下关于三维重建方法的描述,哪一项是错误的?()A.可以通过立体视觉的方法,从不同角度拍摄的图像中计算深度信息B.基于结构光的方法能够快速获取物体表面的三维点云数据C.深度学习在三维重建中也有应用,能够学习从二维图像到三维形状的映射D.三维重建的结果总是非常精确,与真实物体的形状完全一致14、在计算机视觉的视频压缩中,为了在保证视觉质量的同时减少数据量,以下哪种技术可能被广泛应用?()A.运动估计和补偿B.图像分割C.特征点检测D.边缘检测15、在计算机视觉的图像去雾任务中,假设要去除一张有雾图像中的雾气,恢复清晰的场景。以下关于图像去雾方法的描述,正确的是:()A.基于物理模型的去雾方法需要准确估计雾的浓度和传播参数,否则效果不佳B.基于深度学习的去雾方法能够自动学习雾的特征,但对浓雾的处理能力有限C.图像去雾后,颜色和对比度会发生严重失真,影响视觉效果D.所有的图像去雾方法都能够在各种复杂的雾天条件下取得理想的效果16、计算机视觉中的视觉跟踪算法常用于跟踪运动目标。假设要跟踪一只在森林中奔跑的动物,以下关于视觉跟踪算法的描述,哪一项是不正确的?()A.基于模型的跟踪算法通过建立目标的模型来预测其位置和状态B.基于特征的跟踪算法依赖于目标的显著特征进行跟踪C.视觉跟踪算法在目标发生快速变形或完全遮挡时仍能保持准确跟踪D.结合多种线索和信息的融合跟踪算法可以提高跟踪的稳定性和可靠性17、在计算机视觉中,以下哪种方法常用于图像的语义分割中的多尺度特征融合?()A.特征金字塔B.空洞卷积C.注意力机制D.以上都是18、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能19、计算机视觉中的人脸检测和识别是热门研究方向。假设要在一个大规模的人脸数据库中进行快速准确的人脸识别,以下哪种特征提取方法可能更具优势?()A.基于几何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度学习的方法D.基于主成分分析(PCA)的方法20、计算机视觉在农业中的应用可以帮助监测农作物的生长状况。假设要通过图像分析判断农作物的病虫害程度,以下关于农业计算机视觉应用的描述,正确的是:()A.仅依靠农作物的颜色特征就能准确判断病虫害的程度B.不同农作物品种和生长阶段对病虫害判断的影响不大C.结合图像的纹理、形状和颜色等多特征,可以更准确地评估农作物的健康状况D.农业环境的复杂性对计算机视觉的应用没有挑战21、在计算机视觉的图像检索任务中,假设要从海量的图像库中快速找到与给定图像相似的图像。以下关于图像特征表示的选择,哪一项是需要重点考虑的?()A.选择具有高维度的特征向量,包含丰富的图像信息B.采用低维度但具有区分性的特征表示,提高检索效率C.忽略特征的维度和区分性,随机选择一种特征表示D.只使用图像的颜色特征,忽略形状和纹理等特征22、在目标检测中,YOLO(YouOnlyLookOnce)算法的特点是()A.检测速度快B.检测精度高C.适用于小目标检测D.对遮挡不敏感23、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法24、在计算机视觉的自动驾驶应用中,车辆需要准确识别道路标志、交通信号灯和其他车辆的状态。对于实时性和准确性要求极高的场景,以下哪种传感器融合技术能够为车辆提供更全面和可靠的环境感知?()A.摄像头与激光雷达的融合B.毫米波雷达与超声波传感器的融合C.多种摄像头的融合D.以上都是25、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练26、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识27、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响28、在一个基于计算机视觉的机器人导航系统中,需要根据环境图像来规划机器人的路径。以下哪种视觉导航方法可能更适合复杂动态环境?()A.基于地图的导航B.基于视觉里程计的导航C.基于深度学习的端到端导航D.以上都是29、计算机视觉中的姿态估计任务,确定物体在空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,正确的是:()A.基于几何模型的姿态估计方法在复杂环境中总是能够准确估计姿态B.深度学习中的端到端姿态估计网络不需要对物体的结构和运动有先验了解C.姿态估计的结果不受相机参数和拍摄角度的影响D.结合多种传感器数据和深度学习的方法可以提高姿态估计的精度和鲁棒性30、在计算机视觉的图像生成任务中,假设要生成具有真实感的自然图像。以下关于图像生成方法的描述,正确的是:()A.生成对抗网络(GAN)能够生成逼真的图像,但训练过程不稳定,容易模式崩溃B.变分自编码器(VAE)生成的图像多样性好,但真实感不如GAN生成的图像C.自回归模型在图像生成中效率高,能够快速生成高质量的图像D.所有的图像生成方法都能够生成与真实世界完全一致的图像二、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标检测技术,从气象卫星图像中检测出恶劣天气区域。2、(本题5分)基于计算机视觉的智能超市购物系统,通过商品图像识别实现自助结账。3、(本题5分)使用OpenCV实现图像的灰度化处理,并计算灰度图像的均值和标准差。4、(本题5分)使用计算机视觉方法,检测商场门口的人员聚集情况。5、(本题5分)使用目标跟踪算法,跟踪马戏表演中空中飞人的轨迹。三、简答题(本大题共5个小题,共25分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论