版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE古典概型与几何概型[考试要求]1.理解古典概型及其概率计算公式.2.会计算一些随机事务所包含的基本领件数及事务发生的概率.3.了解随机数的意义,能运用随机模拟的方法估计概率.4.了解几何概型的意义.1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典概率模型).(1)试验的全部可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.2.古典概型的概率公式P(A)=eq\f(事务A包含的可能结果数,试验的全部可能结果数).3.几何概型(1)向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形态、位置无关,即P(点M落在G1)=eq\f(G1的面积,G的面积),则称这种模型为几何概型.(2)几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事务发生的频率估计概率.()(2)从区间[1,10]内任取一个数,取到1的概率是eq\f(1,10).()(3)概率为0的事务肯定是不行能事务.()(4)从市场上出售的标准为500±5g的袋装食盐中任取一袋测其重量,属于古典概型.()[答案](1)√(2)×(3)×(4)×二、教材习题衍生1.一枚硬币连掷2次,只有一次出现正面的概率为()A.eq\f(2,3) B.eq\f(1,4)C.eq\f(1,3) D.eq\f(1,2)D[一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种状况,只有一次出现正面的状况有两种,故P=eq\f(2,4)=eq\f(1,2).]2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()A.eq\f(3,5) B.eq\f(4,5)C.eq\f(2,5) D.eq\f(1,5)C[试验的全部结果构成的区域长度为5,所求事务的区域长度为2,故所求概率为P=eq\f(2,5).]3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为()A.eq\f(2,5)B.eq\f(4,15)C.eq\f(3,5)D.eq\f(2,3)A[从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P=eq\f(6,15)=eq\f(2,5).]4.同时掷两个骰子,向上点数不相同的概率为________.eq\f(5,6)[掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P=1-eq\f(6,36)=eq\f(5,6).]考点一简洁的古典概型用公式法求古典概型的概率就是用所求事务A所含的基本领件个数除以基本领件空间Ω所含的基本领件个数求解事务A发生的概率P(A).解题的关键如下:[典例1](1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是()A.eq\f(3,4) B.eq\f(1,3)C.eq\f(3,10) D.eq\f(2,5)(2)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于其次张卡片上的数的概率为()A.eq\f(1,10) B.eq\f(1,5)C.eq\f(3,10) D.eq\f(2,5)(3)(2024·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的改变.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在全部重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.eq\f(5,16) B.eq\f(11,32)C.eq\f(21,32) D.eq\f(11,16)(1)D(2)D(3)A[(1)用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元.乙、丙、丁三人抢完6元钱的全部不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的全部不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).依据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=eq\f(4,10)=eq\f(2,5).(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的状况如图:基本领件总数为25,第一张卡片上的数大于其次张卡片上的数的事务数为10,∴所求概率P=eq\f(10,25)=eq\f(2,5).故选D.(3)由6个爻组成的重卦种数为26=64,在全部重卦中随机取一重卦,该重卦恰有3个阳爻的种数为Ceq\o\al(3,6)=eq\f(6×5×4,6)=20.依据古典概型的概率计算公式得,所求概率P=eq\f(20,64)=eq\f(5,16).故选A.]点评:求基本领件的个数时,应留意其依次性.eq\a\vs4\al([跟进训练])1.将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为()A.eq\f(3,10) B.eq\f(2,5)C.eq\f(3,20) D.eq\f(1,4)C[将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有Ceq\o\al(3,6)种放法,甲盒中恰好有3个小球有Ceq\o\al(2,3)种放法,结合古典概型的概率计算公式得所求概率为eq\f(C\o\al(2,3),C\o\al(3,6))=eq\f(3,20).故选C.]2.已知a∈{0,1,2},b∈{-1,1,3,5},则函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是()A.eq\f(5,12) B.eq\f(1,3)C.eq\f(1,4) D.eq\f(1,6)A[∵a∈{0,1,2},b∈{-1,1,3,5},∴基本领件总数n=3×4=12.函数f(x)=ax2-2bx在区间(1,+∞)上为增函数,①当a=0时,f(x)=-2bx,符合条件的只有(0,-1),即a=0,b=-1;②当a≠0时,须要满意eq\f(b,a)≤1,符合条件的有(1,-1),(1,1),(2,-1),(2,1),共4种.∴函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是P=eq\f(5,12).]考点二古典概型与统计的综合求解古典概型的交汇问题,关键是把相关的学问转化为事务,然后利用古典概型的有关学问解决,其解题流程为:[典例2]某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成果进行统计分析,分别制成了如图所示的男生和女生数学成果的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中随意选取2人,求至少有一名男生的概率.[解](1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本容量与总体中的个体数的比是eq\f(5,30+45)=eq\f(1,15),所以样本中包含的男生人数为30×eq\f(1,15)=2,女生人数为45×eq\f(1,15)=3.则从5人中随意选取2人共有Ceq\o\al(2,5)=10种,抽取的2人中没有一名男生有Ceq\o\al(2,3)=3种,则至少有一名男生有Ceq\o\al(2,5)-Ceq\o\al(2,3)=7种.故至少有一名男生的概率为P=eq\f(7,10),即选取的2人中至少有一名男生的概率为eq\f(7,10).点评:有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是干脆描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,精确从题中提炼信息是解题的关键.eq\a\vs4\al([跟进训练])(2024·天津高考)2024年,我国施行个人所得税专项附加扣除方法,涉及子女教化、接着教化、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采纳分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受状况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受状况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教化○○×○×○接着教化××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(ⅰ)试用所给字母列举出全部可能的抽取结果;(ⅱ)设M为事务“抽取的2人享受的专项附加扣除至少有一项相同”,求事务M发生的概率.[解](1)由已知得老、中、青员工人数之比为6∶9∶10,由于采纳分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(ⅰ)从已知的6人中随机抽取2人的全部可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.(ⅱ)由表格知,符合题意的全部可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事务M发生的概率P(M)=eq\f(11,15).考点三几何概型度量几何法就是利用所求事务A与基本领件空间Ω的几何度量之比求解事务A发生的概率P(A)的方法.解题的关键如下:与长度、角度有关的几何概型[典例3-1]在等腰Rt△ABC中,直角顶点为C.(1)在斜边AB上任取一点M,求|AM|<|AC|的概率;(2)在∠ACB的内部,以C为端点任作一条射线CM,与线段AB交于点M,求|AM|<|AC|的概率.[解](1)如图所示,在AB上取一点C′,使|AC′|=|AC|,连接CC′.由题意,知|AB|=eq\r(2)|AC|.由于点M是在斜边AB上任取的,所以点M等可能分布在线段AB上,因此基本领件的区域应是线段AB.所以P(|AM|<|AC|)=eq\f(|AC′|,|AB|)=eq\f(|AC|,\r(2)|AC|)=eq\f(\r(2),2).(2)由于在∠ACB内以C为端点任作射线CM,所以CM等可能分布在∠ACB内的任一位置(如图所示),因此基本领件的区域应是∠ACB,所以P(|AM|<|AC|)=eq\f(∠ACC′,∠ACB)=eq\f(\f(π-\f(π,4),2),\f(π,2))=eq\f(3,4).点评:当涉及射线的转动、扇形中有关落点区域的问题时,应以角度作为区域的度量来计算概率,切不行用线段的长度代替.与面积有关的几何概型[典例3-2](1)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.eq\f(4n,m) B.eq\f(2n,m)C.eq\f(4m,n) D.eq\f(2m,n)(2)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是()A.eq\f(1,8) B.eq\f(1,4)C.eq\f(3,8) D.eq\f(5,8)(1)C(2)C[(1)因为x1,x2,…,xn,y1,y2,…,yn都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(xn,yn)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得eq\f(S扇形,S正方形)=eq\f(m,n),即eq\f(π,4)=eq\f(m,n),所以π=eq\f(4m,n).(2)建立平面直角坐标系如图,x,y分别表示甲、乙二人到达的时刻,则坐标系中每个点(x,y)可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满意的条件是eq\b\lc\{\rc\(\a\vs4\al\co1(y-x≥5,,0≤x≤20,,5≤y≤20,))其构成的区域为如图阴影部分,则所求的概率P=eq\f(\f(1,2)×15×15,20×15)=eq\f(3,8).]点评:(1)求解由两个量确定的概率问题时,通过建立坐标系,借助于纵、横坐标关系产生的区域面积,得到问题的结论,我们称此类问题为“约会型”概率问题.“约会型”概率问题的求解关键在于合理、恰当地引入变量,再将详细问题“数学化”,通过建立数学模型,得出结论.(2)几何概型与平面几何的交汇问题要利用平面几何的相关学问,先确定基本领件对应区域的形态,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率.与体积有关的几何概型[典例3-3]已知在四棱锥PABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,现在该四棱锥内部或表面任取一点O,则四棱锥OABCD的体积不小于eq\f(2,3)的概率为________.eq\f(27,64)[当四棱锥OABCD的体积为eq\f(2,3)时,设O到平面ABCD的距离为h,则eq\f(1,3)×22×h=eq\f(2,3),解得h=eq\f(1,2).如图所示,在四棱锥PABCD内作平面EFGH平行于底面ABCD,且平面EFGH与底面ABCD的距离为eq\f(1,2).因为PA⊥底面ABCD,且PA=2,所以eq\f(PH,PA)=eq\f(3,4),所以四棱锥OABCD的体积不小于eq\f(2,3)的概率P=eq\f(V四棱锥PEFGH,V四棱锥PABCD)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(PH,PA)))3=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))3=eq\f(27,64).]点评:求解本题的关键是找到四棱锥OABCD的体积为eq\f(2,3)时的点O对应的平面EFGH,然后借助比例关系计算体积比例,进而得出概率值.eq\a\vs4\al([跟进训练])1.已知正三棱锥SABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得VPABC<eq\f(1,2)VSABC的概率是()A.eq\f(7,8) B.eq\f(3,4)C.eq\f(1,2) D.eq\f(1,4)A[由题意知,当点P在三棱锥的中截面A′B′C′以下时,满意VPABC<eq\f(1,2)VSABC,又V锥SA′B′C′=eq\f(1,2)×eq\f(1,4)V锥SABC=eq\f(1,8)V锥SABC.∴事务“VPABC<eq\f(1,2)VSABC”的概率P=eq\f(V合体A′B′C′ABC,V锥SABC)=eq\f(V锥SABC-V锥SA′B′C′,V锥SABC)=eq\f(7,8).]2.已知实数m∈[0,1],n∈[0,2],则关于x的一元二次方程4x2+4mx-n2+2n=0有实数根的概率是()A.1-eq\f(π,4) B.eq\f(π,4)C.eq\f(π-3,2) D.eq\f(π,2)-1A[方程有实数根,即Δ=16m2-16(-n2+2n)≥0,m2+n2-2n≥0,m2+(n-1)2≥1,画出图形如图所示,长方形面积为2,半圆的面积为eq\f(π,2),故概率为eq\f(2-\f(π,2),2)=1-eq\f(π,4).]3.如图,四边形ABCD为矩形,AB=eq\r(3),BC=1,以A为圆心,1为半径作四分之一个圆弧eq\o\ac(DE,\s\up10(︵)),在∠DAB内任作射线AP,则射线AP与线段BC有公共点的概率为________.eq\f(1,3)[因为在∠DAB内任作射线AP,所以它的全部等可能事务所在的区域是∠DAB,当射线AP与线段BC有公共点时,射线AP落在∠CAB内,则区域为∠CAB,所以射线AP与线段BC有公共点的概率为eq\f(∠CAB,∠DAB)=eq\f(30°,90°)=eq\f(1,3).]数学文化2概率与数学文化数学文化是国家文化素养教化的重要组成部分,纵观近几年高考,概率统计部分以数学文化为背景的问题,层出不穷,让人耳目一新.同时它也使考生们受困于背景生疏,阅读受阻,使思路无法打开.下面通过对典型例题的剖析,让同学们增加对数学文化的相识,进而加深对数学文化的理解,提升数学核心素养.以古代文化经典为素材eq\a\vs4\al([典型案例1])(2024·全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.eq\f(1,4) B.eq\f(π,8)C.eq\f(1,2) D.eq\f(π,4)B[不妨设正方形ABCD的边长为2,则正方形内切圆的半径为1,可得S正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S黑=S白=eq\f(1,2)S圆=eq\f(π,2),所以由几何概型知,所求概率P=eq\f(S黑,S正方形)=eq\f(\f(π,2),4)=eq\f(π,8).故选B.][评析]以《易经》八卦中的太极图为载体,既丰富了数学文化的取材途径,又很好体现数学的美学特征,可将实际问题转化为数学中的几何概型问题,结合几何概型解答.eq\a\vs4\al([跟进训练])1.中华文化博大精深,我国古代算书《周髀算经》中介绍了用统计概率得到圆周率π的近似值的方法.古代数学家用体现“外圆内方”文化的钱币(如图1)做统计,现将其抽象成如图2所示的图形,其中圆的半径为2cm,正方形的边长为1cm,在圆内随机取点,若统计得到此点取自阴影部分的概率是p,则圆周率π的近似值为()图1图2A.eq\f(1,41-p)B.eq\f(1,1-p)C.eq\f(1,1-4p)D.eq\f(4,1-p)A[圆形钱币的半径为2cm,面积为S圆=π·22=4π;正方形边长为1cm,面积为S正方形=12=1(cm2).在圆形内随机取一点,此点取自黑色部分的概率是p=eq\f(S圆-S正方形,S圆)=1-eq\f(1,4π),则π=eq\f(1,41-p).故选A.]2.五行学说是华夏民族创建的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.eq\f(1,2) B.eq\f(1,3)C.eq\f(1,4) D.eq\f(1,5)A[金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为eq\f(5,10)=eq\f(1,2),故选A.]3.洛书,古称龟书,是阴阳五行术数之源,在古代传闻中有神龟出于洛水,其甲壳上心有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中随机选取3个不同的数,其和等于15的概率是()A.eq\f(2,21) B.eq\f(1,14)C.eq\f(3,28) D.eq\f(1,7)A[先计算从四个阴数和五个阳数共9个数字中随机选取3个不同的数,总共有Ceq\o\al(3,9)种选法,再计算符合条件和等于15的三个数的种类,即可算出概率.从四个阴数和五个阳数共9个数字中随机选取3个不同的数,总共有Ceq\o\al(3,9)=84种选法,其和等于15的三个数的种类共有8种,即:图形中各横,各列,对角线所在的三个数字之和均为15.故其和等于15的概率是:eq\f(8,84)=eq\f(2,21),故选A.]以数学名人为素材eq\a\vs4\al([典型案例2])(2024·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的探讨中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.eq\f(1,12) B.eq\f(1,14)C.eq\f(1,15) D.eq\f(1,18)C[不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有Ceq\o\al(2,10)种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P=eq\f(3,C\o\al(2,10))=eq\f(1,15),故选C.][评析]以我国数学家陈景润在哥德巴赫猜想的探讨中取得的成果为载体,呈现了我国数学家在数学领域中的地位,可将实际问题转化为数学中的古典概型问题,结合古典概型解答.eq\a\vs4\al([跟进训练])1.(2024·广东梅州一检)如图是古希腊数学家希波克拉底所探讨的几何图形,此图由一个半圆和一个四分之一圆构成,两个阴影区域分别标记为A和M.在此图内任取一点,此点取自A区域的概率记为P(A),取自M区域的概率记为P(M),则()A.P(A)>P(M)B.P(A)<P(M)C.P(A)=P(M)D.P(A)与P(M)的大小与对应的半径长度有关C[设四分之一圆的半径为r,则图中半圆的半径为eq\f(\r(2),2)r.P(A)=eq\f(\f(1,2)r2,\f(1,2)r2+\f(1,2)π\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)r))2)=eq\f(2,π+2),P(M)=eq\f(\f(1,2)r2+\f(1,2)π\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)r))2-\f(1,4)πr2,\f(1,2)r2+\f(1,2)π\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)r))2)=eq\f(2,π+2),所以P(A)=P(M).故选C.]2.费马素数是法国大数学家费马命名的,形如22n+1eq\b\lc\(\rc\)(\a\vs4\al\co1(n∈N))的素数(如:220+1=3)为费马素数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A.eq\f(2,15) B.eq\f(1,5)C.eq\f(4,15) D.eq\f(1,3)B[在不超过30的正偶数中随机选取一数,基本领件总数n=15,能表示为两个不同费马素数的和的只有8=3+5,20=3+17,22=5+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门面买卖合同(34篇)
- 解读地理关键地图
- 订餐平台服务协议模板
- 设备采购招标指南解析
- 诚信机票代购服务合同
- 详解采购合同的多元分类法
- 语文学习方法详解与指导
- 课堂纪律保证书样本模板
- 财务公正承诺书
- 购销合同中的国际市场营销策略
- 【课件】主动运输与胞吞、胞吐高一上学期生物人教版(2019)必修1
- 江西水电站防洪评价报告
- 7-11便利店商品目录大全
- 某宿舍楼工程竣工总结
- 区直机关事业单位借调人员工作鉴定表
- GB/T 26374-2010接运遗体服务
- GB/T 24425.6-2009钢丝螺套技术条件
- GB/T 15242.1-2017液压缸活塞和活塞杆动密封装置尺寸系列第1部分:同轴密封件尺寸系列和公差
- 2022年0327天津公务员考试《申论》试卷(行政执法类)-网友回忆版
- 洁净手术室管理
- 重大危险源档案台账
评论
0/150
提交评论