版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市五校协作体2025届高三一诊考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二项式展开式中,项的系数为()A. B. C. D.2.复数的共轭复数为()A. B. C. D.3.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.34.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值5.若均为任意实数,且,则的最小值为()A. B. C. D.6.下列图形中,不是三棱柱展开图的是()A. B. C. D.7.已知正四面体的棱长为,是该正四面体外接球球心,且,,则()A. B.C. D.8.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A. B. C. D.9.若、满足约束条件,则的最大值为()A. B. C. D.10.已知函数满足,当时,,则()A.或 B.或C.或 D.或11.若a>b>0,0<c<1,则A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb12.计算等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为______.14.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x-y的值为________.15.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.16.已知内角的对边分别为外接圆的面积为,则的面积为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的最大值为2.(Ⅰ)求函数在上的单调递减区间;(Ⅱ)中,,角所对的边分别是,且,求的面积.18.(12分)已知函数.(1)解不等式:;(2)求证:.19.(12分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.20.(12分)已知函数,(1)若,求的单调区间和极值;(2)设,且有两个极值点,,若,求的最小值.21.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.22.(10分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.2、D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.3、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;4、B【解析】
根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【点睛】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.5、D【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.6、C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.7、A【解析】
如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,,,在直角三角形中,,,,,,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.8、C【解析】
把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.【详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,,当且仅当共线时取等号,∴所求最小值为.故选:C.【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.9、C【解析】
作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.10、C【解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.11、B【解析】试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12、A【解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,根据抛物线定义和求得,从而求得直线l的倾斜角.【详解】分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,由抛物线的定义知,,,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直且直线l的倾斜角为锐角,所以直线l的倾斜角为,.故答案为:【点睛】此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.14、【解析】
根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【详解】根据茎叶图中的数据,得:甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故答案为:.【点睛】本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.15、【解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.16、【解析】
由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,从而有,于是可得三角形边长,可得面积.【详解】设外接圆半径为,则,由正弦定理,得,∴,,.故答案为:.【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(1)由题意,f(x)的最大值为所以而m>0,于是m=,f(x)=2sin(x+).由正弦函数的单调性可得x满足即所以f(x)在[0,π]上的单调递减区间为(2)设△ABC的外接圆半径为R,由题意,得化简得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②将①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故18、(1);(2)见解析.【解析】
(1)代入得,分类讨论,解不等式即可;(2)利用绝对值不等式得性质,,,比较大小即可.【详解】(1)由于,于是原不等式化为,若,则,解得;若,则,解得;若,则,解得.综上所述,不等式解集为.(2)由已知条件,对于,可得.又,由于,所以.又由于,于是.所以.【点睛】本题考查了绝对值不等式得求解和恒成立问题,考查了学生分类讨论,转化划归,数学运算能力,属于中档题.19、(1)见解析,(1)存在,【解析】
(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;(1)过点且斜率为的直线方程为,设,,联立直线方程和椭圆方程,根据韦达定理以及,,可得,根据其为定值,则有,进而可得结果.【详解】(1)因为,,所以,因为圆的半径为,圆的半径为,又因为,所以,即,所以圆与圆有公共点,设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,所以,,,即轨迹的方程为;(1)过点且斜率为的直线方程为,设,由消去得到,则,,①因为,,所以,将①式代入整理得因为,所以当时,即时,.即存在实数使得.【点睛】本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力和计算能力,是中档题.20、(1)增区间为,减区间为;极小值,无极大值;(2)【解析】
(1)求出f(x)的导数,解不等式,即可得到函数的单调区间,进而得到函数的极值;(2)由题意可得,,求出的表达式,,求出h(t)的最小值即可.【详解】(1)将代入中,得到,求导,得到,结合,当得到:增区间为,当,得减区间为且在时有极小值,无极大值.(2)将解析式代入,得,求导得到,令,得到,,,,,,,,因为,所以设,令,则所以在单调递减,又因为所以,所以或又因为,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度货物买卖合同(含退换货条款)
- 劳务派遣框架合同
- 农业种植合同协议
- 招标文件案例解析深度解析
- 房屋买卖合同样本国内格式
- 环保产品质量共检协议
- 鸡粪有机肥订购协议
- 维修服务精益求精
- 网络营销服务合同签订注意事项
- 财务代理委托事宜
- 2024年贵州省贵阳修文县事业单位招聘133人历年管理单位遴选500模拟题附带答案详解
- 读书分享《非暴力沟通》课件(图文)
- 宁夏回族自治区银川市2025届高三上学期第三次月考数学试卷含答案
- 2024-2030年中国家禽饲养行业发展前景预测和投融资分析报告
- 2024-2030年中国净菜加工行业市场营销模式及投资规模分析报告
- 2024-2025学年广东省佛山市九年级(上)期中数学试卷(含答案)
- 湖南省长沙市雅礼教育集团2024-2025学年高一上学期期中考试数学试题 含解析
- 中国视觉小说行业现状调查与竞争趋势分析研究报告(2024-2030版)
- 仓储物流中心物业安全管理
- 第二章 空气、物质的构成(选拔卷)(原卷版)
- 咨询师基础心理学课件
评论
0/150
提交评论