版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省大同市平城区第一中学高考冲刺押题(最后一卷)数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则A. B.C. D.2.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.3.已知向量,,若,则()A. B. C.-8 D.84.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面5.设全集U=R,集合,则()A. B. C. D.6.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.7.设集合,集合,则=()A. B. C. D.R8.()A. B. C. D.9.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. B. C. D.10.“是函数在区间内单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.12.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____14.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.15.正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.①,使得;②直线与直线所成角的正切值的取值范围是;③与平面所成锐二面角的正切值为;④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.其中正确命题的序号是________.(写出所有正确命题的序号)16.设函数,,其中.若存在唯一的整数使得,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若,求的面积的最大值.18.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.19.(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.20.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.21.(12分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.22.(10分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
因为,,所以,,故选D.2、B【解析】
根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题3、B【解析】
先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.4、B【解析】
本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误.5、A【解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.6、D【解析】
先计算,然后将进行平方,,可得结果.【详解】由题意可得:∴∴则.故选:D.【点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。7、D【解析】试题分析:由题,,,选D考点:集合的运算8、B【解析】
利用复数代数形式的乘除运算化简得答案.【详解】.故选B.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.9、B【解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,.故选:B.【点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.10、C【解析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.11、A【解析】
求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.12、D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,,,故答案为:.【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.14、【解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码”中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.15、①②③④【解析】
取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取为中点,则,则即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.【详解】取中点,连接,则,所以,所以平面即为平面,取中点,中点,连接,则易证得,所以平面平面,所以点的运动轨迹为线段,平面即为平面.①取为中点,因为是等腰三角形,所以,又因为,所以,故①正确;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;当点与点或点重合时,直线与直线所成角最大,此时,所以直线与直线所成角的正切值的取值范围是,②正确;③与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,,所以③正确;④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.故答案为:①②③④【点睛】本题考查直线与平面的空间位置关系,考查异面直线成角,二面角,考查空间想象能力与转化思想.16、【解析】
根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时,恒成立.综上所述,存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由正弦定理边化角化简已知条件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面积的最大值.【详解】(1),,所以,所以,,,,.(2)由余弦定理得.,,当且仅当时取等,.所以的面积的最大值为.【点睛】本题考查了正余弦定理在解三角形中的应用,考查了三角形面积的最值问题,难度较易.18、(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】
(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.【详解】(1)设等比数列的公比为q,因为,,所以,解得.所以数列的通项公式为:.(2)由(1)得,当,时,可得①,②②①得,,则有,即,,.因为,由①得,,所以,所以,.所以数列是以为首项,1为公差的等差数列.(3)由(2)得,所以,.假设存在等差数列,其通项,使得对任意,都有,即对任意,都有.③首先证明满足③的.若不然,,则,或.(i)若,则当,时,,这与矛盾.(ii)若,则当,时,.而,,所以.故,这与矛盾.所以.其次证明:当时,.因为,所以在上单调递增,所以,当时,.所以当,时,.再次证明.(iii)若时,则当,,,,这与③矛盾.(iv)若时,同(i)可得矛盾.所以.当时,因为,,所以对任意,都有.所以,.综上,存在唯一的等差数列,其通项公式为,满足题设.【点睛】本题考查求等比数列通项公式,证明等差数列,以及数列中的探索性问题,是一道数列综合题,考查学生的分析,推理能力.19、(1)79颗;(2)5.5秒.【解析】
(1)利用各小矩形的面积和为1可得,进而得到脉冲星自转周期在2至10秒的频率,从而得到频数;(2)平均值的估计值为各小矩形组中值与频率的乘积的和得到.【详解】(1)第一到第六组的频率依次为0.1,0.2,0.3,0.2,,0.05,其和为1所以,,所以,自转周期在2至10秒的大约有(颗).(2)新发现的脉冲星自转周期平均值为(秒).故新发现的脉冲星自转周期平均值为5.5秒.【点睛】本题考查频率分布直方图的应用,涉及到平均数的估计值等知识,是一道容易题.20、(1)(2)5【解析】
(1)首先消去参数得到曲线的普通方程,再根据,,得到曲线的极坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,利用直线的参数方程中参数的几何意义得解;【详解】解:(1)曲线:消去参数得到:,由,,得所以(2)代入,设,,由直线的参数方程参数的几何意义得:【点睛】本题考查参数方程、极坐标方程、普通方程的互化,以及直线参数方程的几何意义的应用,属于中档题.21、(1)证明见解析;(2)【解析】
(1)连接交于点,连接,通过证,并说明平面,来证明平面(2)采用建系法以、、所在直线分别为、、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度网络安全防护系统建设公司正规合同3篇
- 二零二五年度公司对公司展览展示空间租赁合同3篇
- 2025年度生物科技企业职工招聘与生物多样性保护合同3篇
- 二零二五年度矿产资源开发承包合同3篇
- 养老院院民2025年度社区活动出行安全协议3篇
- 2025年度建筑材料供货与建筑节能改造合同3篇
- 二零二五年度全屋衣柜定制及安装一体化合同3篇
- 二零二五年度文化创意产业合伙合同协议3篇
- 2025年度企业合规管理委托代理合同3篇
- 2025年度全新出售房屋买卖智能家居集成协议3篇
- 2024年研究生考试考研思想政治理论(101)试卷及解答参考
- 年终奖发放通知范文
- 油田员工劳动合同范例
- Unit 5 Music Listening and Talking 说课稿-2023-2024学年高一英语人教版(2019)必修第二册
- 车间主任个人年终总结
- 2024年甘肃省公务员录用考试《行测》试题及答案解析
- 消防工程技术专业毕业实习报告范文
- 2024年高等教育法学类自考-00229证据法学考试近5年真题附答案
- 安徽省合肥市一六八中2025届高二生物第一学期期末教学质量检测试题含解析
- 医院后勤管理作业指导书
- 六年级下册心理健康教育教案-8 男女生交往小闹钟辽大版
评论
0/150
提交评论