版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省海口市华侨中学高三最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或2.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②点是函数的一个对称中心;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是()A.①② B.①③ C.②③ D.①②③3.若执行如图所示的程序框图,则输出的值是()A. B. C. D.44.设向量,满足,,,则的取值范围是A. B.C. D.5.若复数是纯虚数,则()A.3 B.5 C. D.6.设集合,则()A. B.C. D.7.已知向量,则是的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件8.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.B.C.D.9.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件10.设函数,当时,,则()A. B. C.1 D.11.设,集合,则()A. B. C. D.12.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.若函数恒成立,则实数的取值范围是_____.14.的展开式中,x5的系数是_________.(用数字填写答案)15.已知实数满足,则的最大值为________.16.已知x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.18.(12分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.19.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.20.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.(1)求证:.(2)若,求二面角的余弦值.21.(12分)设数列,其前项和,又单调递增的等比数列,,.(Ⅰ)求数列,的通项公式;(Ⅱ)若,求数列的前n项和,并求证:.22.(10分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.2、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否.详解:因为为对称中心,且最低点为,所以A=3,且由所以,将带入得,所以由此可得①错误,②正确,③当时,,所以与有6个交点,设各个交点坐标依次为,则,所以③正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.3、D【解析】
模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.【详解】;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.故选:D.【点睛】本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.4、B【解析】
由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.5、C【解析】
先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.6、B【解析】
直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.7、A【解析】
向量,,,则,即,或者-1,判断出即可.【详解】解:向量,,,则,即,或者-1,所以是或者的充分不必要条件,故选:A.【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.8、D【解析】
如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.9、B【解析】
根据充分条件、必要条件的定义进行分析、判断后可得结论.【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.10、A【解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.11、B【解析】
先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.12、D【解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。14、-189【解析】由二项式定理得,令r=5得x5的系数是.15、【解析】
作出不等式组所表示的平面区域,将目标函数看作点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,代入点A的坐标可得答案.【详解】画出二元一次不等式组所表示的平面区域,如下图所示,由得点,目标函数表示点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,此时的最大值为.故答案为:.【点睛】本题考查求目标函数的最值,关键在于明确目标函数的几何意义,属于中档题.16、3【解析】
先根据约束条件画出可行域,再由y=2x-z表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,画出可行域如图所示.目标函数z=2x-y,即平移直线y=2x-z,截距最大时即为所求.2y+1=0x-y-1=0点A(12,z在点A处有最小值:z=2×1故答案为:32【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(答案不唯一)(2)证明见解析【解析】
(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.18、(1)见解析;(2)存在,长【解析】
(1)先证面,又因为面,所以平面平面.(2)根据题意建立空间直角坐标系.列出各点的坐标表示,设,则可得出向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.【详解】解:(1)证明:因为四边形为矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.如图所示:则,,,,,设,;∴,,设平面的法向量为,∴,不防设.∴,化简得,解得或;当时,,∴;当时,,∴;综上存在这样的点,线段的长.【点睛】本题考查平面与平面垂直的判定定理的应用,考查利用线面所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.19、(1)(2)直线恒过定点,详见解析【解析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题.20、(1)见解析(2)【解析】
(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角.【详解】(1)证明:连接,,.,,平面.平面,平面平面.,为的中点,.平面平面,平面.平面,.为斜边的中点,,(2),由(1)可知,为等腰直角三角形,则.以为坐标原点建立如图所示的空间直角坐标系,则,,,,则,记平面的法向量为由得到,取,可得,则.易知平面的法向量为.记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为.【点睛】本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角.在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解.21、(1),;(2)详见解析.【解析】
(1)当时,,当时,,当时,也满足,∴,∵等比数列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,显然数列是递增数列,∴,即.)22、(1)分布列见解析,分布列见解析;(2)甲设备,理由见解析【解析】
(1)的可能取值为10000,11000,12000,的可能取值为9000,10000,11000,12000,计算概率得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师合同范本
- 室内门生产安装合同(2篇)
- 土地居间合同范本完整版不同附录版
- 2024年度工程泥浆无害化处理外运合同2篇
- 二零二四年度食品加工企业原材料供应与产品销售合同3篇
- 2024年度货运代理合同:货主与货运代理公司之间的货物运输合同3篇
- 煤炭供销合同模板
- 很多人未取贷款合同
- 临时工劳动合同
- 二零二四年度石油化工管道安装工程专业承包合同
- 2024年上海中考语文记叙文阅读专题一写人记事散文(原卷版 +解析版)
- 监理工作中变更管理的规范与应对措施
- 门诊部健康宣教课件
- 2024年天津中煤进出口有限公司招聘笔试参考题库附带答案详解
- 正骨八法教学课件
- IABP主动脉球囊反搏课件
- 中考物理复习建议课件
- 美国保险行业报告
- 机电安装工程文明施工环境保护方案
- 《需求管理流程》课件
- 《平衡记分卡实例》课件
评论
0/150
提交评论