版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京十三中、中华中学2025届高三一诊考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上为增函数,则的值可以是()A.0 B. C. D.2.二项式展开式中,项的系数为()A. B. C. D.3.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.4.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,5.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为()A.2 B. C. D.36.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种 B.24种 C.36种 D.48种7.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.8.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有()种A. B. C. D.9.过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为()A. B. C. D.10.执行如图所示的程序框图,则输出的的值为()A. B.C. D.11.已知数列满足,且,则的值是()A. B. C.4 D.12.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院.14.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.15.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.16.展开式中项系数为160,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.18.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.19.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.20.(12分)的内角,,的对边分别为,,,其面积记为,满足.(1)求;(2)若,求的值.21.(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.22.(10分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.(1)求椭圆的标准方程;(2)设直线的斜率分别为.①若,求证:直线过定点;②若直线过椭圆的右焦点,试判断是否为定值,并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.2、D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.3、B【解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.4、D【解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果5、A【解析】
由已知,圆心M到渐近线的距离为,可得,又,解方程即可.【详解】由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【点睛】本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.6、C【解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.7、D【解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.8、C【解析】
在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【详解】两组至少都是人,则分组中两组的人数分别为、或、,
又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.9、A【解析】
直线的方程为,令,得,得到a,b的关系,结合选项求解即可【详解】直线的方程为,令,得.因为,所以,只有选项满足条件.故选:A【点睛】本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.10、B【解析】
列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.11、B【解析】由,可得,所以数列是公比为的等比数列,所以,则,则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.12、D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、161【解析】
由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果.【详解】某医院一次性收治患者127人.第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.且从第16天开始,每天出院的人数是前一天出院人数的2倍,从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,则第19天治愈出院患者的人数为,,解得,第天该医院本次收治的所有患者能全部治愈出院.故答案为:16,1.【点睛】本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.14、【解析】
根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.15、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(16、-2【解析】
表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,,故可得//,为中点;又因为四边形为等腰梯形,是的中点,故可得//;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,,作交于点,由(1)可知平面,又因为//,故可得平面,则;又因为//,,故可得即,,两两垂直,则分别以,,为,,轴建立空间直角坐标系,则,,,,,,设面的法向量为,则,,则,可取,设平面的法向量为,则,,则,可取,可知平面与平面所成的锐二面角的余弦值为.【点睛】本题考查由面面平行推证线面平行,涉及用向量法求二面角的大小,属综合基础题.18、(1)(2)【解析】
(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,也就是在单调递增,所以.当即时,,不符合;当即时,,符合当即时,根据零点存在定理,,使,有时,,在单调递减,时,,在单调递增,成立,故只需即可,有,得,符合综上得,,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.19、(1);(2)见解析【解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,,.所以,总金额的分布列如下表:03006009001200总金额的数学期望为元.20、(1);(2)【解析】
(1)根据三角形面积公式及平面向量数量积定义代入公式,即可求得,进而求得的值;(2)根据正弦定理将边化为角,结合(1)中的值,即可将表达式化为的三角函数式;结合正弦和角公式与辅助角公式化简,即可求得和,进而由正弦定理确定,代入整式即可求解.【详解】(1)因为,所以由三角形面积公式及平面向量数量积运算可得,所以.因为,所以.(2)因为,所以由正弦定理代入化简可得,由(1),代入可得,展开化简可得,根据辅助角公式化简可得.因为,所以,所以,所以为等腰三角形,且,所以.【点睛】本题考查了正弦定理在解三角形中的应用,三角形面积公式的应用,平面向量数量积的运算,正弦和角公式及辅助角公式的简单应用,属于基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具购买合同书
- 商品购销合同完整版
- 摩托车买卖合同
- 高级餐厅服务员岗位绩效考核管理咨询合同(04版)
- 个人与酒店2024年度会议室租赁合同3篇
- 2024年度工程内部承包信息保密合同3篇
- 2024年度演唱会门票退款合同协议3篇
- 2024年度版权使用费按进度付款合同3篇
- 英语基础模块1 课件 -U7 When Disaster Strikes
- 初中拼音课件教学课件教学课件教学
- 电机制造中的无刷直流电机制造考核试卷
- GB/T 1984-2024高压交流断路器
- 2024年执业医师考试-医师定期考核(人文医学)考试近5年真题集锦(频考类试题)带答案
- 期末(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 院前急救技能竞赛(驾驶员)理论考试题库大全-上(选择题)
- 道法认识生命(作业)【后附答案解析】2024-2025学年七年级道德与法治上册(统编版2024)
- 9知法守法 依法维权 第2课时 守法不违法 (教学设计)-部编版道德与法治六年级上册
- 三方代付工程款协议书范本2024年
- 【道法】爱护身体 课件-2024-2025学年统编版道德与法治七年级上册
- 第二次月考测评卷(5-6单元)(试题)-2024-2025学年六年级数学上册人教版
- 医学课件抗痉挛体位摆放
评论
0/150
提交评论