87均值与方差在生活中的运用(提升)(原卷版)_第1页
87均值与方差在生活中的运用(提升)(原卷版)_第2页
87均值与方差在生活中的运用(提升)(原卷版)_第3页
87均值与方差在生活中的运用(提升)(原卷版)_第4页
87均值与方差在生活中的运用(提升)(原卷版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.7均值与方差在生活中的运用(提升)1.(2021·江苏海安·高三开学考试)有9个外观相同的同规格砝码,其中1个由于生产瑕疵导致质量略有减少,小明想通过托盘天平称量出这个有瑕疵的砝码,设计了如下两种方案:方案一:每次从待称量的砝码中随机选2个,按个数平分后分别放在天平的左、右托盘上,若天平平衡,则选出的2个砝码是没有瑕疵的;否则,有瑕疵砝的砝码在下降一侧.按此方法,直到找出有瑕疵的砝码为止.方案二:从待称量的砝码中随机选8个,按个数平分后分别放在天平的左、右托盘上,若天平平衡,则未被选出的那个砝码是有瑕疵的;否则,有瑕疵的砝码在下降一侧,每次再将该侧砝码按个数平分,分别放在天平的左、右托盘上,…,直到找出有瑕疵的砝码为止.(1)记方案一的称量次数为随机变量X,求X的概率分布;(2)上述两种方案中,小明应选择何种方案可使称量次数的期望较小?并说明理由.2.(2021·重庆市秀山高级中学校高三月考)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为级时,产品为一等品;第三工序的加工结果为级,且第一、第二工序至少有一道工序加工结果为级时,产品为二等品;其余均为三等品.每一道工序加工结果为级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率表二等级一等品二等品三等品利润2385(1)用表示一件产品的利润,求的分布列和数学期望;(2)因第一工序加工结果为级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加万元(即每件产品利润相应减少万元)时,第一工序加工结果为级的概率增加.问该改良方案对一件产品利润的期望是否会产生影响?并说明理由.3.(2021·全国高三模拟预测)2020年抗击新冠肺炎武汉封城期间,某公司的产品因符合抗疫要求(全部用统一规格的包装箱包装且有物流配送支持)能继续直销武汉.为了把握准确的需求信息,他们使用大数据统计了武汉2019年末近100天内每天此产品的售货量(单位:箱)如下表所示:售货量(箱)天数5203030105统计分析发现服从正态分布.(1)画出售货量的频率分布直方图,并求出的值.(2)估计该公司一个月(30天)内售货量在区间内的天数(结果保留整数).(3)为鼓励分销商,该公司出台了两种不同的促销方案.方案一:直接返现,按每日售货量三级返现:时,返现400元;时,返现800元;时,返现1200元.方案二:通过抽奖返现:每日售货量低于时有一次抽奖机会;每日售货量不低于时有两次抽奖机会.每次抽奖获得奖金40O元的概率为,获得奖金800元的概率为.据你分析,分销商应采用哪种方案?请说明理由.附:若,则,.4.(2021·广东龙岗·横岗高中)2020年底,因疫情影响,在上海打工的张某响应国家的号召,决定就地过年,他购买了四件礼物,重量分别为1.1kg,2.8kg,3.3kg和6.7kg.张某欲将四件礼物随机分成两份,每份两件,寄给远在安徽老家的父母和孩子.已知某快递公司的收费标准为:首重9元,续重4元/kg(注:首重是1kg以内(含1kg),续重是指超过首重部分的重量,不足1kg的按1kg计算,如1.1kg的按2kg计算).(1)试分析求张某如何组合可使支付的邮寄费用最低,并求出最低费用;(2)该快递公司对某一快递网点近100天揽件数量进行了统计(如图).该公司从收取的每件快递的费用中抽取8元作为前台工作人员的工资和公司利润,剩余的作为其他费用.若前台工作人员每人每天揽件的上限是120件,工资是150元/天.目前该网点前台有工作人员3人,公司准备将增加1名该网点的前台工作人员,请你根据以上信息,判断增加一名前台工作人员后对提高公司利润是否更有利?5.(2021·北京人大附中)某工厂每天生产1000箱某型号口罩,每箱300个,该型号口罩吸气阻力不超过343.2pa的为合格品,否则为不合格品,不可出厂销售.生产过程中随机抽取了20个口罩进行检测,其吸气阻力值(单位:pa)如下表所示:(1)从样本中随机抽取1个口罩,求其为不合格品的概率;(2)从样本中随机抽取3个口罩,求其中含有不合格品的概率;(3)已知每个口罩的检测费用为0.05元.按有关规定,该型号口罩出厂前,工厂要对每一个口罩进行吸气阻力检测,为督促工厂执行此规定,每天生产的口罩出厂后,质检部门将随机抽取100箱,每箱抽3个口罩进行检测,每检测出一个不合格品,罚款500元.这个处罚标准是否合理?说明理由.6.(2021·内蒙古乌兰察布·高三一模(理))大学生知识竞赛中,每个代表队有3个队员,编号为1、2、3,答编号为1号、2号、3号的3道题,答对两道可过关,答对3道为优秀,如表是星火代表队答对各题的概率分布,其中第m行第n列的数字是第m号同学能答对第n号题的概率.0.70.60.40.70.70.50.80.80.6(1)按选手编号与题目编号相同的方式答题,求该队过关的概率;(2)调整选手的答题次序,求出该队优秀的最大概率.7.(2021·重庆实验外国语学校高三开学考试)2022年冬季奥林匹克运动会主办城市是北京,北京成为第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及亚洲运动会三项国际赛事的城市!为迎接冬奥会的到来,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:(1)在这10所学校中随机选取3所来调查研究,求这3所学校参与“自由式滑雪”都超过40人的概率;(2)“单板滑雪”参与人数超过45人的学校可以作为"基地学校",现在从这10所学校中随机选出3所,记X为选出可作“基地学校”的学校个数,求X的分布列和数学期望;(3)现在有一个“单板滑雪”集训营,対“基础站姿、滑行、转弯、停止”这4个动作技巧进行集训.规定:这4个动作中至少有3个动作达到“优秀",则总考核记为"优秀".在集训前,小李同学4个动作中每个动作达到“优秀”的概率为0.2,在集训后的考核中,小李同学总考核成绩为“优秀”.能否认为小李同学在集训后总考核达到“优秀”的概率发生了变化?并说明理由.8.(2021·云南民族大学附属中学(理))某学校高一年级进行班级之间的中国历史知识竞赛活动,甲、乙两位同学代表各自班级以抢答的形式展开,共五道题,抢到并回答正确者得一分,答错则对方得一分,先得三分者获胜.每一次抢题甲、乙两人抢到每道题的概率都是,甲、乙正确回答每道题的概率分别为,,且两人各道题是否回答正确均相互独立.(1)比赛开始,求甲先得一分的概率;(2)求甲获胜的概率;(3)问:若将题干中的抢答五道题改为抢答三道题,先得两分者获胜,其余条件不变,则对甲更有利还是更不利?请说明理由.9.(2021·北京海淀·)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(1)求样本中患病者的人数和图中,的值;(2)在该指标检测值为4的样本中随机选取2人,求这2人中有患病者的概率;(3)某研究机构提出,可以选取常数(),若一名从业者该项身体指标检测值大于,则判断其患有这种职业病;若检测值小于,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患有职业病.写出使得判断错误的概率最小的的值及相应的概率(只需写出结论).10.(2021·全国)在高中理科综合试卷中,多项选择题一般是给出四个选项,其中全部选对的得分,选对但不全的得分,有选错的得分.在某次考试的理科综合试卷多项选择题第,题中,第题有且只有两个选项符合要求,第题有且只有三个选项符合要求,甲、乙两位同学由于考前准备不足,只能对这两道题的选项进行随机选取,每个选项是否被选到是等可能的.(1)若甲、乙两位同学每题均随机选取一项,求甲、乙两位同学合计得分的概率;(2)若甲同学计划每题均随机选取两项,乙同学计划每题均随机选取一项,请根据你学过的概率知识判断谁的方案更优.11.(2021·湖南长沙·高三模拟预测)核酸检测是诊断新冠病毒(nCoV)的重要标准之一,通过被检者核酸检测可以尽早发现感染者,感染者新冠病毒核酸检测呈阳性.2020年抗疫期间,某社区拟对其中850户4口之家以家庭为单位进行核酸检测,假定每个人核酸检测呈阳性还是阴性相互独立,且每个人核酸检测呈阳性的概率都是.在进行核酸检测时,可以逐个检测,也可以将几个样本混合在一起检测.检测方式有三种选择:方式一:逐个检测;方式二:将每个4口之家检测样本平均分成两组后,分组混合检测;方式三:将每个4口之家4个检测样本混合在一起检测;其中,若混合样本1次检测结果呈阴性,则认为该组样本核酸检测全部呈阴性,不再检测,若混合样本1次检测结果呈阳性,则对该组样本中的各个样本再逐个检测.(1)假设某4口之家中有2个样本呈阳性,逐个检测,求恰好经过3次检测能把这个家庭阳性样本全部检测出来的概率;(2)若,分别求该社区选择上述三种检测方式,对其中850户4口之家进行核酸检测次数的数学期望,你建议选择哪种检测方式较好,请简述其实际意义(不要求证明).(附:,,.)12(2021·江西南昌·高三三模(文))“自媒体”是指普通大众通过网络等途径向外发布他们本身的事实和新闻的传播方式某“自媒体”作者2020年度在“自媒体”平台A上发布了200条事实和新闻,现对其点击量进行统计,如表格所示:点击量(万次)条数201006020(Ⅰ)现从这200条事实和新闻中采用分层抽样的方式选出10条,求点击量超过50万次的条数;(Ⅱ)为了鼓励作者,平台A在2021年针对每条事实和新闻推出如下奖励措施:点击量(万次)奖金(元)02005001000若该作者在2021年5月份发布了20条事实和新闻,请估计其可以获得的奖金数.13.(2021·全国高三月考(理))核酸检测也就是病毒DNA和RNA的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状乙肝、丙肝和艾滋病的病毒检测.通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出份分为一组,将样本分成若干组,从每一组的标本中各取部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.以此类推,直到确定所有样本的结果.若每次检测费用为元,记检测的总费用为元.(1)当时,求的分布列和数学期望;(2)(ⅰ)比较与两种方案哪一个更好,说明理由;(ⅱ)试猜想100份标本中有2份阳性,98份阴性时,和两种方案哪一个更好(只需给出结论不必证明).14.(2021·北京房山·高三二模)为了提高中小学生的身体素质,某地区开展了中小学生跳绳比赛系列活动,活动结束后,利用简单随机抽样的方法,抽取了部分学生的成绩,按照不同年龄段公组记录如下表:组别男生女生合格不合格合格不合格第一组90108020第二组88127228第三组60405842第四组80206238第五组82187822合计400100350150假设每个中小学生跳绳成绩是否合格相互独立.(1)从样本中的中小学生随机抽取1人,求该同学跳绳成绩合格的概率;(2)从该地区众多中小学的男生、女生中各随机抽取1人,记这2人中恰有X人跳绳成绩合格,求X的分布列与数学期望;(3)假设该地区中小学生跳绳成绩合格的概率与表格中该地区中小学生跳绳成绩合格的频率相等,用“”表示第k组同学跳绳成绩合格,“”表示第k组同学跳绳成绩不合格(),试确定方差中哪个最大?哪个最小?(只需写出结论).15.(2021·黑龙江大庆·铁人中学(理))甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4.甲、乙约定比赛当天上午进行3局热身训练,下午进行正式比赛.(1)上午的3局热身训练中,求甲恰好胜2局的概率;(2)下午的正式比赛中:①若采用“3局2胜制”,求甲所胜局数x的分布列与数学期望;②分别求采用“3局2胜制”与“5局3胜制”时,甲获胜的概率;对甲而言,哪种局制更有利?你对局制长短的设置有何认识?16.(2021·全国高三专题练习)城市大气中总悬浮颗粒物(简称TSP)是影响城市空气质量的首要污染物,我国的《环境空气质量标准》规定,TSP日平均浓度(单位:)在时为一级水平,在时为二级水平.为打赢蓝天保卫战,有效管控和治理那些会加重TSP日平均浓度的扬尘污染刻不容缓.扬尘监测仪与智能雾化喷淋降尘系统为城市建筑工地的有效抑尘提供了技术支持.某建筑工地现新配置了智能雾化喷淋降尘系统,实现了依据扬尘监测仪的TSP日平均浓度进行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论