河南省商丘开封名校联考2024-2025学年高一上学期11月期中考试 数学(含答案)_第1页
河南省商丘开封名校联考2024-2025学年高一上学期11月期中考试 数学(含答案)_第2页
河南省商丘开封名校联考2024-2025学年高一上学期11月期中考试 数学(含答案)_第3页
河南省商丘开封名校联考2024-2025学年高一上学期11月期中考试 数学(含答案)_第4页
河南省商丘开封名校联考2024-2025学年高一上学期11月期中考试 数学(含答案)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024~2025学年度高一上学期期中联考试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.函数的定义域为()A. B.C. D.3.已知幂函数的图象经过点,则=()A. B.9 C. D.4.设、,“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件5.如果是定义在上的奇函数,那么下列函数中,一定是偶函数的是A. B.C. D.6.若,,则的取值范围是()A. B.C. D.7.已知,则的解析式为()A. B.C. D.8.已知定义在上的函数f(x)满足对,,都有,若,则不等式的解集为()A B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列各组函数中表示同一个函数是()A., B.,C, D.,10.已知关于的不等式的解集为或x>2,则下列说法正确的是()AB.C.关于的不等式的解集为或D.若,则关于的不等式的解集为或x>211.已知,,且,则下列不等式恒成立的是()A. B. C. D.三、填空题:本题共3小题,每小题5分,共15分.12.命题“,”的否定是_____________13.已知满足,且,则______.14.若函数在区间上的最大值为M,最小值为m,则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合(1)若,请写出集合所有子集;(2)若集合,且,求的取值范围.16.已知.(1)若成立,求实数的取值范围,(2)若和中至多有一个成立,求实数的取值范围.17.已知函数.(1)简述图象可由的图象经过怎样平移得到;(2)证明:的图象是中心对称图形,并计算的值.18.某公司由于业务的快速发展,计划在其仓库外,利用其一侧原有墙体,建造一间高为4米,底面积为108平方米,且背面靠墙的长方体形状的贵重物品存储室.由于此贵重物品存储室的后背靠墙,无需建造费用,某工程队给出的报价如下:存储室前面新建墙体的报价为每平方米1500元,左、右两面新建墙体的报价为每平方米1000元,屋顶和地面以及其他报价共计36000元,设存储室的左、右两面墙的长度均为米,该工程队的总报价为元(1)请用表示;(2)求该工程队的总报价的最小值,并求出此时的值.19.若函数在区间上的值域恰为,则称区间为的一个“倒域区间”.已知定义在上的奇函数,当时,.(1)求的解析式;(2)若关于的方程在上恰有两个不相等的根,求的取值范围;(3)求函数在定义域内的所有“倒域区间”.2024~2025学年度高一上学期期中联考试卷数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】A7.【答案】C8.【答案】C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】BD10.【答案】AC11.【答案】BCD12.【答案】,13.【答案】414.【答案】4四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【答案】(1)、、、(2)16.【解析】【分析】(1)根据题意可得,根据存在性问题分析求解;(2)取反面:当和均成立时,求参数的取值范围,进而可得结果.【小问1详解】若成立,因为时,,可得,所以实数的取值范围为.【小问2详解】和中至多有一个成立,考虑其反面:和均成立,若成立,因为时,,可得;若成立时,,解得或;若均成立时,可得,所以至多有一个成立时,则.综上上述:实数的取值范围为.17.【解析】【分析】(1)变形函数,再利用平移变换求出变换过程.(2)利用中心对称的定义计算推理得证;再利用对称性求出函数值及和.【小问1详解】由于,所以的图象可由的图象先向左平移一个长度单位,再向上平移一个长度单位得到.【小问2详解】因为,所以的图象关于中心对称;则,,…,,所以.18.【解析】【分析】(1)求出前面墙的长度,再根据题意可得出关于的表达式;(2)利用基本不等式可求出的最小值,利用等号成立的条件求出的值,即可得出结论.【小问1详解】前面墙的长度为米,总报价,其中.【小问2详解】,当且仅当,即时等号成立,所以总报价的最小值为180000元,并求出此时的值为9米.19.【解析】【分析】(1)根据奇函数的性质,取相反数,利用已知的函数解析式,整理可得答案;(2)整理方程,构造函数,结合二次函数的性质,可得答案;(3)根据题目中的新定义,利用分类讨论,结合函数的单调性,建立方程,可得答案.【小问1详解】当时,则,由奇函数的定义可得,所以.小问2详解】方程即,设,由题意知,解得.【小问3详解】因为在区间上的值域恰为,其中且,所以,则,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论