![专题22圆锥曲线中的定点定值定直线问题微点4圆锥曲线中的定点定值定直线综合训练(学生版)_第1页](http://file4.renrendoc.com/view9/M03/3C/02/wKhkGWdAnO-ADVJ-AAG5PuVmcC8576.jpg)
![专题22圆锥曲线中的定点定值定直线问题微点4圆锥曲线中的定点定值定直线综合训练(学生版)_第2页](http://file4.renrendoc.com/view9/M03/3C/02/wKhkGWdAnO-ADVJ-AAG5PuVmcC85762.jpg)
![专题22圆锥曲线中的定点定值定直线问题微点4圆锥曲线中的定点定值定直线综合训练(学生版)_第3页](http://file4.renrendoc.com/view9/M03/3C/02/wKhkGWdAnO-ADVJ-AAG5PuVmcC85763.jpg)
![专题22圆锥曲线中的定点定值定直线问题微点4圆锥曲线中的定点定值定直线综合训练(学生版)_第4页](http://file4.renrendoc.com/view9/M03/3C/02/wKhkGWdAnO-ADVJ-AAG5PuVmcC85764.jpg)
![专题22圆锥曲线中的定点定值定直线问题微点4圆锥曲线中的定点定值定直线综合训练(学生版)_第5页](http://file4.renrendoc.com/view9/M03/3C/02/wKhkGWdAnO-ADVJ-AAG5PuVmcC85765.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题22圆锥曲线中的定点、定值、定直线问题微点4圆锥曲线中的定点、定值、定直线综合训练专题22圆锥曲线中的定点、定值、定直线问题微点4圆锥曲线中的定点、定值、定直线综合训练(2022·河南·濮阳市油田第二高级中学模拟预测)1.已知椭圆C:的离心率,且圆过椭圆C的上、下顶点.(1)求椭圆C的方程;(2)若直线l的斜率为,且直线l与椭圆C相交于P,Q两点,点P关于原点的对称点为E,点是椭圆C上一点,若直线AE与AQ的斜率分别为,,证明:.(2022·山东青岛·二模)2.已知点在椭圆上,椭圆C的左右焦点分别为,,的面积为.(1)求椭圆C的方程;(2)设点A,B在椭圆C上,直线PA,PB均与圆相切,记直线PA,PB的斜率分别为,.(i)证明:;(ii)证明:直线AB过定点.(2022·全国·模拟预测)3.已知椭圆:的左、右焦点分别为,,离心率为,为椭圆上的动点.当点与椭圆的上顶点重合时,.(1)求的方程;(2)当点为椭圆的左顶点时,过点的直线(斜率不为0)与椭圆的另外一个交点为,的中点为,过点且平行于的直线与直线交于点.试问:是否为定值?若是,求出此定值,若不是,请说明理由.(2022·河南安阳·模拟预测)4.在平面直角坐标系xOy中,已知点,,点M满足.记M的轨迹为C.(1)求C的方程;(2)设点P为x轴上的动点,经过且不垂直于坐标轴的直线l与C交于A,B两点,且,证明:为定值.(2022·重庆南开中学模拟预测)5.已知点,动点到直线的距离为,且,记的轨迹为曲线.(1)求的方程;(2)过作圆的两条切线、(其中、为切点),直线、分别交的另一点为、.从下面①和②两个结论中任选其一进行证明.①为定值;②.(2022·上海闵行·二模)6.已知点分别为椭圆的左、右焦点,直线与椭圆有且仅有一个公共点,直线,垂足分别为点.(1)求证:;(2)求证:为定值,并求出该定值;(3)求的最大值.(2022·上海黄浦·二模)7.已知双曲线:,为左焦点,为直线上一动点,为线段与的交点.定义:.(1)若点的纵坐标为,求的值;(2)设,点的纵坐标为,试将表示成的函数并求其定义域;(3)证明:存在常数、,使得.(2022·广东·华南师大附中三模)8.已知在△ABC中,,,动点A满足,,AC的垂直平分线交直线AB于点P.(1)求点P的轨迹E的方程;(2)直线交x轴于D,与曲线E在第一象限的交点为Q,过点D的直线l与曲线E交于M,N两点,与直线交于点K,记QM,QN,QK的斜率分别为,,,①求证:是定值.②若直线l的斜率为1,问是否存在m的值,使?若存在,求出所有满足条件的m的值,若不存在,请说明理由.(2022·安徽·合肥一六八中学模拟预测)9.已知圆M:上动点Q,若,线段QN的中垂线与直线QM交点为P.(1)求交点P的轨迹C的方程;(2)若A,B分别轨C与x轴的两个交点,D为直线上一动点,DA,DB与曲线C的另一个交点分别是E、F、证明:直线EF过一定点.(2022·江苏南通·模拟预测)10.已知F1(-,0),F2(,0)为双曲线C的焦点,点P(2,-1)在C上.(1)求C的方程;(2)点A,B在C上,直线PA,PB与y轴分别相交于M,N两点,点Q在直线AB上,若+,=0,证明:存在定点T,使得|QT|为定值.11.设双曲线1,其虚轴长为2,且离心率为.(1)求双曲线C的方程;(2)过点P(3,1)的动直线与双曲线的左右两只曲线分别交于点A、B,在线段AB上取点M使得,证明:点M落在某一定直线上;(3)在(2)的条件下,且点M不在直线OP上,求△OPM面积的取值范围.(2022·云南师大附中高三月考)12.已知双曲线:的离心率为2,F为双曲线C的右焦点,(2,3)是双曲线C上的一个点.(1)求双曲线C的方程;(2)若过F且不与渐近线平行的直线(斜率不为0)与双曲线C的两个交点分别为M,N,记双曲线C在点M,N处的切线分别为,,点为直线与直线的交点,试判断点是否在一条定直线上,若是,求出定直线的方程;若不是,请说明理由.(注:若双曲线方程为,则该双曲线在点处的切线方程为)(2023·全国·高三月考)13.已知双曲线过点,离心率为,直线交轴于点,过点作直线交双曲线于两点.(1)求双曲线的标准方程;(2)若是线段的中点,求直线的方程;(3)设是直线上关于轴对称的两点,直线与的交点是否在一条直线上?请说明你的理由.14.设双曲线,其虚轴长为,且离心率为.(1)求双曲线的方程;(2)过点的动直线与双曲线的左右两支曲线分别交于点、,在线段上取点使得,证明:点落在某一定直线上.(2022江苏·星海实验中学高二月考)15.某高校的志愿者服务小组决定开发一款“猫捉老鼠”的游戏.如图所示,A,B两个信号源相距10米,O是AB的中点,过点O的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足接收到点A的信号比接收到点B的信号晚一秒(注:信号每秒传播米).在时,测得机器鼠距离点O为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动:时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?16.已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.17.在平面直角坐标系中,已知抛物线及点,动直线过点交抛物线于,两点,当垂直于轴时,.(1)求的值;(2)若与轴不垂直,设线段中点为,直线经过点且垂直于轴,直线经过点且垂直于直线,记,相交于点,求证:点在定直线上.18.已知圆,抛物线,倾斜角为的直线过的焦点且与相切.(1)求的值;(2)点在的准线上,动点在上,在点处的切线交轴于点,设四边形为平行四边形,求证:点在直线上.19.已知椭圆的左、右顶点分别为点,,且,椭圆离心率为.(1)求椭圆的方程;(2)过椭圆的右焦点,且斜率不为的直线交椭圆于,两点,直线,的交于点,求证:点在直线上.20.已知椭圆的离心率,为椭圆的右焦点,为椭圆上的动点,的最大值为3.(1)求椭圆的标准方程;(2),分别为椭圆的左、右顶点,过点作直线交椭圆于,两点,直线、交于点,试探究点是否在某条定直线上,若是,请求出该定直线方程,若不是,请说明理由.21.在平面直角坐标系中,已知椭圆:的离心率为,以椭圆上的一点和长轴的两个端点为顶点的三角形面积最大值为.(1)求,的值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年重庆市渝中区四年级(上)期末数学试卷
- 2022-2023学年福建省厦门市集美区双塔小学片区四年级(上)期末数学试卷
- 河北工业大学土木工程测量试题及答案-
- 2025年个人房屋拆除合同标准样本(2篇)
- 2025年企业前台临时用工协议范文(2篇)
- 2025年买方信贷融资意向性协议参考样本(三篇)
- 2025年人防土建工程合同(2篇)
- 2025年个人贷款合同标准范文(2篇)
- 专题02 利用导函数研究函数的单调性问题(常规问题)(典型题型归类训练) 解析版
- 休闲娱乐场所油漆装修协议
- 四川省自贡市2024-2025学年上学期八年级英语期末试题(含答案无听力音频及原文)
- 2025-2030年中国汽车防滑链行业竞争格局展望及投资策略分析报告新版
- 2025年上海用人单位劳动合同(4篇)
- 二年级上册口算题3000道-打印版让孩子口算无忧
- 新疆乌鲁木齐地区2025年高三年级第一次质量监测生物学试卷(含答案)
- 卫生服务个人基本信息表
- 高中英语北师大版必修第一册全册单词表(按单元编排)
- 新教科版科学小学四年级下册全册教案
- 苗圃建设项目施工组织设计范本
- 广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 学校食品安全举报投诉处理制度
评论
0/150
提交评论