比估计与回归估计课件_第1页
比估计与回归估计课件_第2页
比估计与回归估计课件_第3页
比估计与回归估计课件_第4页
比估计与回归估计课件_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

比估计与回归估计第一节比估计的一般形式一、比估计综述比估计是依据调查变量与辅助变量间的比率来对总体有关参数进行估计和推断。通常简称比估计。同简单估计相比,比估计具有以下特点:(1)在比估计中,除调查变量外,还需要了解与调查变量有关的辅助变量,并且要求辅助变量的总体均值或总体总和必须事先已知。充分利用辅助变量带来的信息估计总体参数,比单纯用调查变量资料会有更好的效果。(2)比估计方法,对抽样调查单元是有条件的,通常是用组成总体的最基层单位为调查单元。(3)比估计只适用于有限总体,因为只有有限总体才可能计算出为比估计所需要的辅助变量的总体总和与总体均值。(4)当每个单元的调查变量与辅助变量的比例(一般要求为正比例)十分稳定,且变异很小时,比估计就具有十分精确的估计效果,只要抽取少量的样本单元,就可得到满意的结论。(5)在比估计时,出于估计精度方面的要求,选择辅助变量时,须与调查变量的关系愈密切愈好,至少要求相关系数在1/2以上。比估计中,辅助变量可以是上次普查或调查时与调查变量相应的数据(即调查变量的前期或历史资料);也可以是对调查变量的粗略估计;或者是表示单元规模的某个量。为了充分发挥比估计的优越性,在应用比估计时应考虑两条:一是选与调查变量有较密切的正相关关系的变量作为辅助变量。因为如果辅助变量与调查变量的关系不密切,各自独立变化,则对比估计起不了应有的辅助作用。二是样本容量要比较大。因为比估计是有偏倚的,只有当样本容量n比较大时,其偏倚才能比较小,比估计才更加有效。比率估计是有偏的,但当样本量n增大时,偏倚逐渐趋于零。三、总体均值和总和的比估计当调查变量和辅助变量具有正相关关系时,为了利用辅助变量的信息,可以构造总体均值或总和的比估计量。在简单随机抽样中,总体均值和总体总和的比估计量分别为结论为:利用比估计提高抽样效果的条件是ρ>1/2。五、样本容量的确定第二节分层比估计

分层随机抽样中的比估计量有两种形式:先构造各层比估计,再加权平均——各层分别比估计;先加权平均,再构造比估计——联合比估计。一、各层分别比估计各层分别比估计是先对各层分别进行比估计,然后按层权加权平均,以得出总体参数的估计,即:第三节回归估计的一般形式一、回归估计概述回归估计就是根据样本各单元调查变量与辅助变量间的关系构造回归方程,并据回归系数对总体有关参数进行估计。如果在回归估计中只有一个辅助变量,则所进行的估计称为一元回归估计,若同时采用多个辅助变量综合进行估计,则称为多元回归估计。多元回归估计比一元回归估计效果更好,但更复杂。这里只介绍一元回归中的线性回归估计。回归估计的主要特点有:同比估计一样,回归估计充分利用了有关的辅助变量资料以有效地提高估计的精度;回归估计中要求辅助变量的总体均值或总和事先已知;回归估计一般只适用于有限总体,因为只有有限总体才可能计算出辅助变量的总体均值和总和;回归估计量一般优于比估计量和简单估计量。特别地当回归系数等于总体比率(即总体回归直线通过原点)时,回归估计量与比估计量的效果相同,当调查变量与辅助变量间的相关系数ρ=0时,回归估计与简单估计的效果相同。但是,回归估计量的优越性只有在大样本的情形下才能得到较好的发挥,而在小样本时,它的性质就不大好,因而使用回归估计量,样本量一定要大,一般情况n≥30时,回归估计量较比估计量和简单估计量有较优的估计效果,但它的意义不如后两法简单明了,计算方法也较为复杂,特别是多元线性回归估计或非线性回归估计时更是如此。不过随着电子计算机的广泛应用,再复杂的计算也可通过计算机进行。回归估计中辅助变量可以是一个,也可以是两个或多个;辅助变量应与调查变量存在一定的联系(不一定是密切关系)。1、β为设定的常数(如β=B)时的情形2、β需从样本计算时的情形当β需从样本计算时,受前面确定B的最佳值的思路的启发,β的一个有效估计应是总体回归系数B的最小二乘估计,也即取β为样本回归系数b。三、回归估计量与简单估计量及比估计量的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论