新泰一中北校高一上学期数学期中考试答案_第1页
新泰一中北校高一上学期数学期中考试答案_第2页
新泰一中北校高一上学期数学期中考试答案_第3页
新泰一中北校高一上学期数学期中考试答案_第4页
新泰一中北校高一上学期数学期中考试答案_第5页
全文预览已结束

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期中考试参考答案:题号12345678910答案AAABDBCBACACD题号11答案AC12.{1}13.14.【详解】第一空:当时,,当时,,可得函数在上单调递减,在上单调递增,且,所以的值为;当时,函数fx=1x综上,的值域是;第二空:作出函数与的图象,如图,因为的值域是,当时,fx=若,由图象可知fx=由第一空可知也不满足题意,则必有,所以,得,则,当时,,,且当时,解得或,即,,结合图象可知,综上,,即实数c的取值范围是.故答案为:;.15.【详解】(1)原式.-----------------------------------------------------4分(2)原式.------------------------------------------------------------------7分(3),,,且,,.---------------------------------------------------------13分16.【详解】(1)当时,,----------------------------2分由得,即,解得,-----------------------------4分则,所以.--------------------------------------------------------------------------6分(2)∵,∴.----------------------------------------------------------------------------10分∵是的充分不必要条件,∴真包含于,显然,则,且两边不能同时取得“=”,解得.故实数m的取值范围是.-----------------------------------------------------------------15分17.【详解】(1)依题意,当时,,每台的平均利润为,当且仅当时取等号,所以当生产10台时,每台的平均利润最大.----------------------------------------------------5分(2)当时,,当且仅当时取等号;----------------------------------------------------------------------------------------------8分当时,,---------------12分当且仅当,即时取等号,而,所以当生产该设备为(台)时所获利润最大,最大利润为(万元).------15分18.【详解】(1),且是奇函数,,,解得,.-----------------------------------------------------------------------------------------2分(2)证明如下:任取,,且,则,-------------------------------4分,且,,,∴,,即,函数在上单调递减.-----------------------------------------------------------------6分同理可证明函数在上单调递增.-------------------------------------------------8分(3)由题意知,令,,由(1)可知函数在上单调递减,在上单调递增,,-------------------------------------------------------------------------------------10分函数的对称轴方程为,函数在上单调递增,当时,取得最小值,;----------------------------12分当时,取得最大值,.所以,,------------------------------------------14分又对任意的,都有恒成立,,即,解得,又,的取值范围是.----------------------------------------------------------------17分19.【详解】(1)因为集合且,,所以,---------------------------------------------------------------------------2分所以当或时,取得最大值,---------4分当或时,取得最小值,所以集合中元素的最大值为,最小值为;----------------------------6分(2)因为,,所以,所以,当且仅当,即时取等号;------------------------------------10分(3)由题意及(2)可得当且仅当时取等号,所以,----------------------------------------------------------------12分,---------------------

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论