洁净煤技术毕业设计_第1页
洁净煤技术毕业设计_第2页
洁净煤技术毕业设计_第3页
洁净煤技术毕业设计_第4页
洁净煤技术毕业设计_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录摘要——————————————3电厂污染物排放现状及危害————4国家环保要求污染物排放标准———6洁净煤技术———————————8提高煤炭质量的技术———————9洁净燃烧与发电技术———————12煤炭转化技术——————————19对方案的实施进行论述——————22总结——————————————23摘要我国是一个以煤为主要一次能源的国家,在今后较长时期内,电力工业中以煤炭为主的能源结构不会改变,更不可能减少煤炭的消耗量。目前中国煤炭的转化利用率较低,煤炭的开发和利用已成为我国环境污染物排放的主要来源,因此中国的能源发展面临着严峻的环境的挑战。为了促进能源与环境协调发展,研究和发展清洁煤发电技术以提高燃煤火电厂的热效率是减少污染物排放最有效的措施之一;也是中国以煤为主的能源生产和消费结构下解决环境污染问题的一个必然选择。我国政府已正式提出对大气污染物进行有效地控制,并致力于发展洁净煤发电技术。在“九五”计划期间,我国政府计划实施先进的洁净煤发电技术示范工程,采用技贸结合的方式引进设备和设计制造技术,为在中国进一步广泛应用清洁煤发电技术奠定基础。文章就近年来中国洁净煤技术在电厂上的发展来写的。

1.电厂污染物排放现状及危害中国是一个煤炭消费大国。大量燃烧原煤,是污染大气环境的主要来源。1998年,中国大气环境污染仍然以煤烟型为主,主要污染物是二氧化硫和烟尘。酸雨问题十分严重,以煤烟型为主的大气污染导致酸雨的覆盖面积约占国土面积的30%,呈明显的区域性特征。全国二氧化硫、烟尘和工业粉尘的排放量分别为2090万t、1452万t和1322万t,分别比上年下降了7.8%、7.7%和12.2%。生活来源的二氧化硫排放量为497万t,比上年提高0.6%;生活烟尘排放量为277万t,比上年下降10.1%。生活来源的污染物占总量的比重较上年有所增加(详见表1)。1998年,工业废气中,燃烧废气消烟除尘率(含县及县以上工业和重点乡镇工业污染源)和工艺废气净化处理率(含县及县以上工业和重点乡镇工业污染源)分别达到89.4%和77.1%,比1997年分别提高了1.0个和0.2个百分点,其中县及县以上工业分别为91.5%和79.9%,分别比上年提高了1.1个和0.5个百分点。1998年1月,国务院以国函[1998]5号文批复了国家环保总局制定的《酸雨控制区和二氧化硫污染控制区划分方案》,明确要求:到2000年,排放二氧化硫的工业污染源达标排放,并实行二氧化硫总量控制,到2010年,二氧化硫总量控制在2000年排放水平以内。同时要求:新建、改造燃煤含硫量大于1%的电厂,必须建设脱硫设施;现有燃煤含硫大于1%的电厂,要在2000年前采取减排二氧化硫的措施,在2010年前分期分批建成脱硫设施或采取其它具有相应效果的减排二氧化硫的措施。1.1燃烧排放与酸雨污染形成酸雨的主要物质是SO2和NOx,这两类物质的90%都来自矿物质燃料燃烧。酸雨影响水生生物生长或使其死亡;大面积的森林死亡也归因于酸雨的危害;酸雨还加速建筑材料的腐蚀;酸雨使地面水呈酸性。为减少酸雨的危害,必须采取增大燃煤洗选率、增加低硫煤开采与使用、大规模采用烟气脱硫装置、大力采用循环流化床燃烧技术、征收SO2排放税等措施,控制造成酸雨的污染物SO2等的排放。1.2全球气候变暖与能源工业大气底层聚集大量温室气体,地球辐射的长波被温室气体反射回来,有效地避免热量散失。当大气层中温室气体浓度上升时,温室效应增强,导致全球气候变暖,其中影响较大的是浓度增加最快的CO2和CH4。矿物燃料燃烧和地球植被破坏是CO2浓度增加的主要原因,能源工业同时也是CH4的一个重要的产生源。随着世界能源消耗不断增长,电力行业在能源直接消耗中所占份额越来越大,加快电力行业的科技转化,研究开发洁净煤技术,将成为解决温室效应的重点突破口。1.3臭氧层破坏与燃烧排放人类过多使用CFCS及矿物燃料燃烧的排放物有关。大气同温层O2可通过四种途径减少:紫外光照射下的分解反应;Cl与其反应;NO与其反应;OH及HO2与O3的反应。其中,70%的O3与NO反应而消减。近年来,燃烧过程中N2O的排放引起较大重视,它是一种温室效应气体,并且能破坏大气同温层的臭氧层,同温层中N2O浓度的增加将引起臭氧层中NO浓度增加,从而使臭氧层变薄加速。在电力行业引进先进的洁净燃烧技术,降低NOx排放,对保护臭氧层起到积极的作用。2.国家环保要求污染物排放标准锅炉最高允许烟尘排放浓度和烟气黑度按表1规定执行锅炉类别适用区域烟尘浓度(mg/m3)烟气黑度(林格曼黑度,级)Ⅰ时段Ⅱ时段燃煤锅炉≤0.7MW常压自然通风锅炉一类区100501二类区A区120100B区150120其它锅炉一类区100501二类区A区180150B区220180燃油锅炉燃用重(渣)油一类区禁排禁排1二类区200禁排其它燃油一类区5050二类区1001001燃气锅炉全部区域50501表2锅炉最高允许SO2和NOx排放浓度锅炉类别适用区域SO2浓度(mg/m3)NOx浓度(mg/m3)Ⅰ时段Ⅱ时段Ⅰ时段Ⅱ时段燃煤锅炉一类区500400/二类区SO2污染控制区650500其余地区800650燃油锅炉燃用重(渣)油一类区禁排禁排禁排禁排二类区400禁排/禁排其它燃油全部区域400300300300燃气锅炉全部区域50503003003.洁净煤技术为了减少直接烧煤产生的环境污染,世界各国都十分重视洁净煤技术的开发和应用。我国是烧煤大国,70%以上的能源依靠煤炭,大力发展洁净煤技术有更重要意义。洁净煤技术包括两个方面:一是直接烧煤洁净技术,二是煤转化为洁净燃料技术。直接烧煤洁净技术。这是在直接烧煤的情况下,需要采用的技术措施:①燃烧前的净化加工技术,主要是洗选、型煤加工和水煤浆技术。原煤洗选采用筛分、物理选煤、化学选煤和细菌脱硫方法,可以除去或减少灰分、矸古、硫等杂质;型煤加工是把散煤加工成型煤,由于成型时加入石灰固硫剂,可减少二氧化硫排放,减少烟尘,还可节煤;水煤浆是先用优质低灰原煤制成,可以代替石油。②燃烧中的净化燃烧技术,主要是流化床燃烧技术和先进燃烧器技术。流化床又叫沸腾床,有泡床和循环床两种,由于燃烧温度低可减少氮氧化物排放量,煤中添加石灰可减少二氧化硫排放量,炉渣可以综合利用,能烧劣质煤,这些都是它的优点;先进燃烧器技术是指改进锅炉、窑炉结构与燃烧技术,减少二氧化硫和氮氧化物的排放技术。③燃烧后的净化处理技术,主要是消烟除尘和脱硫脱氮技术。消烟除尘技术很多,静电除尘器效率最高,可达99%以上,电厂一般都采用。脱硫有干法和湿法两种,干法是用浆状石灰喷雾与烟气中二氧化硫反应,生成干燥颗粒硫酸钙,用集尘器收集;湿法是用石灰水淋洗烟尘,生成浆状亚硫酸排放。它们脱硫效率可达90%。(2)煤转化为洁净燃料技术。①煤的气化技术,有常压气化和加压气化两种,它是在常压或加压条件下,保持一定温度,通过气化剂(空气、氧气和蒸汽)与煤炭反应生成煤气,煤气中主要成分是一氧化碳、氢气、甲烷等可燃气体。用空气和蒸汽做气化剂,煤气热值低;用氧气做气化剂,煤气热值高。煤在气化中可脱硫除氮,排去灰渣,因此,煤气就是洁净燃料了。②煤的液化技术,有间接液化和直接液化两种。间接液化是先将煤气化,然后再把煤气液化,如煤制甲醇,可替代汽油,我国已有应用。直接液化是把煤直接转化成液体燃料,比如直接加氢将煤转化成液体燃料,或煤炭与渣油混合成油煤浆反应生成液体燃料,我国已开展研究。③煤气化联合循环发电技术,先把煤制成煤气,再用燃气轮机发电,排出高温废气烧锅炉,再用蒸汽轮机发电,整个发电效率可达45%。我国正在开发研究中。④燃煤磁流体发电技术,当燃煤得到的高温等离子气体高速切割强磁场,就直接产生直流电,然后把直流电转换成交流电。发电效率可过50%~60%。4.提高煤炭质量的技术4.1煤炭洗选煤炭洗选加工,是根据原煤(毛煤)、矿物杂质和煤矸石的粒度、密度、硬度、润湿性等物理化学性质的差别,采用人工拣矸、机械筛分、物理选煤、物理化学选煤、化学选煤和微生物选煤等处理方法,清除原煤中的有害杂质,排除矸石,降低灰分、硫分、水分,提高回收率,回收伴生物矿,改善煤炭质量,按照市场所需求的产品分选加工生产出不同规格品种及不同用途的煤炭产品,以供不同用户的过程,是煤炭达洁净、高效利用的目的及后续深加工的必要前提。选煤工艺可分为四类:筛分、物理选煤、化学选煤、细菌脱硫。理选煤、化学选煤、细菌脱硫。筛分是把煤分成不同的粒度。物理选煤目前普遍使用的方法有跳汰、重介质选煤和浮选三种。跳汰选煤是在上下波动的变速脉冲水流中,使相对密度不同的煤和矸石分开。重介质选煤是用磷铁矿粉等配制的重介质悬浮液(其相对密度介于煤与矸石之间),将煤与矸石等杂质分开。浮选是利用煤和矸石表面湿润性的差异,洗选粒度小于0.5mm的煤。煤炭经洗选后可显著降低灰分和硫分的含量,减少烟尘、二氧化硫等污染物的排放。目前发达国家需要洗选的原煤已100%入洗,重介质旋流器、跳汰机、浮选机等成熟的选煤技术己被广泛采用,洗煤厂处理能力大,洗选效率高。4.2动力配煤动力配煤是将不同牌号、不同品质的煤经过筛选、破碎、按比例配合等过程,从而改变动力煤的化学组成、岩相组成、物理特性和燃烧性能,达到充分利用煤炭资源、优化产品结构、煤质互补、适应用户燃煤设备对煤质要求、提高燃烧效率和减少污染物排放的洁净煤技术。20世纪80年代初期,我国京、津、沪等大城市开始采用动力配煤技术,近几年来,动力配煤技术在我国得到了广泛应用,实践表明,动力配煤有着投入及生产成本低,均化煤质与节煤效益显著,产品适应面广的特点,配煤生产线建设投入约为20元/t?年~40元/t?年,加工成本约2元/t~4元/t,使用配煤的平均节煤率约为5%~10%。因此,积极发展动力配煤技术,提高动力用煤的配煤比重,是一种符合当前我国技术、经济水平和煤炭产销状况的行之有效的途径4.3型煤型煤又称人造煤块。型煤是一种或数种煤与一定比例的粘结固硫剂等经加工成一定形状尺寸和有一定理代性能的块状燃料或原料。当今型煤也可以是粉煤及一定比例的煤泥等其它低热值燃料或废弃物加上粘结剂、添加剂加工成型煤的,有的燃烧特性还超过了原煤的燃烧特性。型煤技术是一种洁净煤技术,是煤炭洁净利用的重要途径之一。

型煤分为民用型煤和工业型煤两类。燃用锅炉型煤比烧散煤,可提高锅炉热热效率,节煤可达15%~25%,减少烟尘排放量80%~90%以上,固硫率可达52%~73%,还可降低其他污染物排放。民用型煤与烧散煤相比,热效率可达65%-72%,排烟黑度降到<1/2格林曼级,节煤20%-30%,烟尘和SO2排放可减少40%-60%。所以燃用型煤,安全系数、高效洁净、使用方便,具有明显的经济、环境和社会效益。型煤的节能、环保、经济性和技术成熟性,早已被国内外所公认。4.5水煤浆水煤浆是70年代兴起的新型煤基液体燃料,许多国家基于长期的能源战略考虑,将其作为以煤代油的燃料技术进行研究、开发和储备,且已实现商业化使用。水煤浆是一种良好的煤基燃料,灰分及含硫量低,燃烧时火焰中心温度较低,燃烧效率高,烟尘、SO2及NOX排放量都低于燃油和燃煤,是新型的煤代油燃料。4.5.1水煤浆技术发展状况我国的水煤浆研究工作起步于70年代末,80年代初,与国外同步,直接原因是国际上爆发的石油危机,使各个国家都在寻找以一种代替石油的新能源。众所周知,中国是一个富煤、少气、贫油的国家,因此,怎样高效、环保地开发和利用煤炭资源几乎成为中国惟一的也是最好的选择。正因为如此,我国在20年的时间里没有间断对水煤浆的研发工作,并于1983年5月攻关研制出了第一批水煤浆试燃烧成功。近年来,我国的水煤浆制备技术和燃料技术发展很快,并达到了国际水平。截至目前,我国已有水煤浆厂10家,设计年生产能力203万吨,实际年产80万吨。先后完成了动力锅炉、电厂锅炉、轧钢加热炉、热处理炉、干燥窑等炉窑燃用水煤浆的工程试验。水煤浆是国家科委认定的高新技术,为国家重点发展新产品,也是当今世界研究热点——洁净煤技术中的重要分支。5.洁净燃烧与发电技术5.1整体煤炭气化燃气-蒸汽联合循环发电(IGCC)IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图IGCC发电技术是煤气化和蒸汽联合循环的结合,是当今国际正在兴起的一种先进的洁净煤(CCT)发电技术,具有高效、低污染、节水、综合利用好等优点。煤经过气化和净化后,除去煤气中99%以上的硫化氢和接近100%的粉尘,将固体燃料转化成燃气轮机能燃用的清洁气体燃料,以驱动燃气轮机发电,再使燃气发电与蒸汽发电联合起来。煤气化联合循环发电(IGCC)是目前世界发达国家大力开发的一项高效、低污染清洁煤发电技术,它不仅能满足日趋严格的环保要求,而且发电效率可达45%以上,二氧化硫排放可达到10毫克/标准立方米左右,极有可能成为21世纪主要的洁净煤发电方式之一。IGCC技术是目前已进入商业化运行的洁净煤发电技术中,发电效率和环保最好的技术。现在,全世界已建、在建和拟建的IGCC电站近30套,最大的为美国44万千瓦机组,计划或可研中最大容量为德国90万千瓦机组和前苏联100万千瓦机组。由于IGCC有煤清洁燃烧发电特点,我国把它列入21世纪CCT计划中。它的主要优点是:热效率高,目前已达43%~46%,计划2010年可达到50%;环保性能好。脱硫率98%~99%以上,NOx排放等同于天然气,CO2排放也减少;燃料适应性强,对高硫煤有独特的适应性;④可用于对燃油联合循环机组及老燃煤电厂改造,达到提高效率、改善环保、延长寿命的多重目的。我国IGCC发电技术的研究开发工作经历了约二十年,一些单项技术如气化炉、空分设备、煤气脱硫、余热锅炉等有一定的技术基础。“八五”期间与美国德士古(Texaco)公司等合作,完成了水煤浆加压气化200MW和400MW等级的IGCC预可行性研究。国外发展情况。目前IGCC发电技术正处于第二代技术的成熟阶段,燃气轮机初温达到1288℃,单机容量可望超过400MW。世界在建、拟建的IGCC电站24座,总容量8400MW,最大单机300MW。荷兰的BAGGENUM电站(单机253MW)已于1994年投入运行,美国IGCC示范工程取得重大进展,WabashRiver电厂煤气化电厂改造项目,系统供电能力262MW,设计供电效率38%,脱硫效率>98%。项目于1998年11月完成商业化示范运行。美国WABASHRIVER电站(单机265MW)及TAMPA电站(单机260MW)、西班牙的PUERTOLLANO电站(单机300MW),已于1997年前相继投入试验或试生产。

循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。

循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。石灰石受热分解为氧化钙和二氧化碳。气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用。钙硫比达到2~2.5左右时,脱硫率可达90%以上。

流化床燃烧方式的特点是:①清洁燃烧,脱硫率可达80%~95%,NOx排放可减少50%;②燃料适应性强,特别适合中、低硫煤;③燃烧效率高,可达95%~99%;④负荷适应性好。负荷调节范围30%~100%。

循环流化床(CFBC)锅炉煤种适应性广,是当前世界上煤炭洁净燃烧的首选炉型,具有氮氧化物排放低、燃料适应性广、燃烧效率高、脱硫率可达到98%、排出灰渣易于综合利用、负荷调节范围大等突出的高效低污染优点,是重要的洁净燃烧技术。5.2循环流化床(CFBC)循环流化床燃烧技术国外CFBC技术在向大型化发展。目前单机容量最大的CFBC锅炉(250MW,蒸发量700吨/时)电站已在法国投入运行,锅炉效率90.5%,脱硫率93%,Nox排放低于250mg/Nm3。

我国现已具备设计制造75t/h循环流化床锅炉的能力;自行开发的220t/hCFB锅炉示范工程和引进410t/h循环床锅炉工程在进行。CFB的设计基础研究方面也取得了一些进展,完成了循环床专用设计软件;125MW再热炉型的工程设计研究和新型75t/h和130t/h循环流化床锅炉的研究设计工作。5.3整体煤气化联合循环(IGCC)煤气化联合循环发电(IGCC)是目前世界发达国家大力开发的一项高效、低污染清洁煤发电技术,它不仅能满足日趋严格的环保要求,而且发电效率可达45%以上,极有可能成为21世纪主要的洁净煤发电方式之一。

美国IGCC示范工程取得重大进展,WabashRiver电厂煤气化电厂改造项目,系统供电能力262MW,设计供电效率38%,脱硫效率>98%。项目于1998年11月完成商业化示范运行。Tampa电力公司IGCC电厂,系统供电能力250MW,设计供电效率40%,脱硫效率>96%,预计2001年10月完成商业化示范运行。PinonPineIGCC发电项目,系统供电能力99MW,设计供电效率40.7%,预计2000年7月完成商业化示范运行。

我国IGCC关键技术研究已启动,包括IGCC工艺、煤气化、煤气净化、燃气轮机和余热系统方面的关键技术。拟在烟台电厂建1GW示范电站。

5.4常规火电机组中洁净煤技术的应用随着国家对环保要求的不断提高,对火电厂的污染物排放控制就更加严格。1997年国家修订了火电厂大气污染物的排放标准,增加了对SO2的排放浓度限制和提出了Nox浓度限制。在1998年又进一步对SO2污染控制区和酸雨控制区提出了更加严格的限制,要求2000年达标排放,并实行总量控制;禁止在大中型城市区域及近郊新建燃煤电厂;新建、改造燃煤含硫量大于1的电厂必须建设脱硫设施;2000年前现有燃煤含硫量大于1的电厂要求减排,2010年前分批建成脱硫设施或采取其它减排措施。5.5污染排放控制与废弃物处理领域包括烟气净化、煤层气的开发利用、煤矸石、粉煤灰和煤泥的综合利用、工业锅炉和窑炉等技术。

重点针对电厂、工业炉窑和民用3个领域,注重经济与环境协调发展,重点开发社会效益、环境效益与经济效益明显、实用而可靠的先进技术。在组织实施上采取优先推广一批技术成熟、在近期能够显著减少烟煤污染的技术,如选煤、型煤、配煤、烟气脱硫等;示范一批能在21世纪初实现商业化的技术,如增压循环流化床发电、大型循环流化床、工业型煤等;研究开发一批起点高、对长远发展有影响的技术,如煤炭液化、燃料电池等。5.6常规火电机组脱硫电力部门从70年代开始研究二氧化硫控制问题;80年代中期,加大了脱硫试验的研究力度,80年代末完成了四川白马电厂处理烟气量7×104m3/h的旋转喷雾脱硫的中间试验,90年代建成了四川珞璜电厂2×360MW全容量FGD脱硫装置;山东黄岛电厂210MW机组处理烟气量30×104m3/h旋转喷雾脱硫装置;山西太原第一热电厂处理烟气量60×104m3/h简易湿法脱硫装置,四川成都热电厂处理烟气量30×104m3/h电子束法脱硫装置。

正在建设的脱硫装置有珞璜二期2×360MW全容量FGD脱硫装置,深圳西部电厂300MW机组海水脱硫装置,南京下关电厂125MW机组炉内喷钙脱硫装置以及重庆电厂二台200MW机组、杭州半山电厂二台125MW机组、北京第一热电厂二台100MW机组、扬州电厂200MW机组、太原第二热电厂200MW机组等正在实施脱硫工程的改造。

当前电厂脱硫的原则是:

对300MW及以上的新装机组,以采用湿法(石灰石—石膏法)FGD为主。

对300MW以下的中型机组,可采用价格比较便宜的脱硫方式,如旋转喷雾脱硫、炉内喷钙脱硫、尾部烟气循环流化床脱硫等。

对中小型老机组实施简易的脱硫改造。

对沿海地区的电厂能否大规模使用海水脱硫技术,仍在论证之中。

5.7低NOx燃烧技术电力系统从80年代初就开始进行通过燃烧措施控制NOX的研究,90年代初对中国主要的炉型烟气中的NOX排放量进行普查,为制定中国的NOX排放标准提供了依据。目前国家电力公司正在开展300MW及以上容量的机组在燃用不同煤种及不同燃烧方式下的NOX生成与排放性能的测试调研与评价分析。降低NOX排放主要在燃烧器和燃烧过程中做工作。

分级燃烧方式,最先在50MW机组上进行了试验,新投产的300、600MW机组的燃烧器也具有分级燃烧功能,可降低NOX的排放量约20-30。

新型燃烧器的设计、如多功能船形体煤粉燃烧器、钝体燃烧器、浓淡型燃烧器,都用于四角切园燃烧,研究的重点是稳定燃烧,但也具有一定的降低NOX生成的功能。新型低NOX园型旋流燃烧器,可以降低NOX的生成量达到50以上,这种燃烧器用于前后墙燃烧,目前已在北京高井电站100MW机组进行整台锅炉改造的试验。

烟气脱硝装置具有较高的脱硝效率,但价格昂贵,可能在2000年后推广,目前只是开展前期的研究工作。

5.8除尘中国新建的200MW及以上的火电机组全部采用电除尘器,全国平均除尘效率为96,要使2000年烟尘排放量控制在1992年的水平,即全国火电厂平均除尘效率要求达到97.5。主要措施是:减少入炉煤的灰份含量,在五年内有可能下降3-5个百分点;

大力推广采用高效电除尘器,除尘效率达99以上。

加速对中、低效除尘器的改造,这类除尘器从容量上来说占20,而排放的烟尘却占火电厂烟尘排放总量的50以上。6.煤炭转化技术6.1煤炭转化领域包括煤炭气化、煤炭液化、燃料电池。6.1.1煤炭气化煤气化技术是重要的能源转化技术,广泛用于化工、冶金、机械、建材、民用燃气等方面,目前全国每年气化用煤量约6000万吨。我国引进了一些先进的大型煤气化技术都在运行中。我国的中小型气化以块煤固定床气化技术为主,技术水平落后、效率低、污染重,急需技术改造。引进的一些较先进的气化技术在稳定操作运行、技术设备国产化、经济投入及运行效益方面也存在不少问题,因此需要发展具有中国知识产权、适合国情、高效洁净的现代气化技术。地下气化技术应用于煤矿残煤气化的试验取得了一定的进展。煤炭液化是重要的煤转化技术。由中德、中日、中美合作的三个煤直接液化工业示范项目可行性研究在进行中,中德合作采用云南先锋褐煤在德国DMT公司的工艺开发装备上进行了的工业条件试验和最佳工艺条件运转试验,液化油收率达到53%;对中国固定床加氢催化剂进行了条件试验,结果表明该催化剂适用于德国IGOR工艺;示范厂可研报告已经完成。在日本1t/d装置进行了中国依兰煤、中国西林硫铁矿催化剂、日本合成硫化铁催化剂的直接液化条件试验,油收率为52%-57%。中美合作的中国神华煤直接液化可行性研究项目完成第一阶段工作,在美国HTI公司连续小试装置上对神华柠条塔煤进行了6个条件的试验,使用HTI的技术和GelCat催化剂,油收率达63%-68%;6.1.2燃料电池科技部在UNDP的支持下正在推动燃料电池公共汽车示范计划。6.1.3烟气净化技术目前,世界上运行着500座以上的烟气脱硫装置。而其中90%以上(按机组容量计)为湿法脱硫工艺。半干法旋转喷雾法、炉内喷吸收剂――增湿活化脱硫工艺在欧洲应用较多。流化床燃烧技术在燃烧过程中有效控制SO2、NOx的生成,日益受到重视。日本开展利用表面热处理后的活性炭纤维(ACF)对烟道气进行脱硫、脱氮的试验研究,取得了很好效果。。利用ACF净化烟道气的技术属于半干式氧化型,其优点是:脱硫、脱氮反应在常温下进行,副产的硫酸、硫酸盐及硝酸、硝酸盐等可以获得连续回收。该燃煤锅炉烟气脱硫、脱氮技术不仅具有较高的脱硫、脱氮性能,且用水量少,所需设备简单,目前正在进行实用化研究。随着我国大气污染日益加剧,烟气净化技术进一步受到社会各方面的重视。“中日合作电子束烟气脱硫示范工程”,已累计运行2400小时,1998年5月28日通过国家竣工验收鉴定。该示范工程处理成都电厂200MW机组锅炉的30万m3/h烟气,是目前世界上已投入运行的处理烟气量最大的电子束脱硫装置。其脱硫率及脱硝率均超过80%及10%的设计值,各项运行消耗指标均低于设计值。此外,引进芬兰IVO公司炉内喷钙和增湿活化联合工艺和日本日立公司的高速平流式湿法工艺正在进行。国际上已有的脱硫效率高的成熟技术,引进后对我们积累设备设计、运行和管理经验是有用的,但国外技术和设备价格昂贵,应结合我国经济能力,开发和推广适合我国国情的技术与工艺。国内烟气净化技术基础研究和中小锅炉烟气净化技术也取得一定进展。为提高脱硫剂的脱硫效率,在Ca(OH)2中加入易潮解盐和碱或用燃烧飞灰和Ca(OH)2的水合物作吸着剂;或用活性焦或活性炭作吸附剂,在实验室研究中都取得一定成果。适合中小型锅炉的网膜塔除尘脱硫系统、双击式除尘脱硫工艺等也取得了初步成效6.1.4粉煤灰综合利用我国粉煤灰研究和利用的重点是大用量方向,例如掺于混凝土中,建桥、建坝、高层建筑底板、核发电站的安全壳等,正在建设中的三峡工程预计用粉煤灰量达133.8万吨。更大量的利用在于修筑高等级公路,该技术已成熟,推广于沪宁、京深及京冀公路建设。粉煤灰还用于矿区回填、农业上改良土壤。预计到2000年我国粉煤灰的排放量将达到1.6亿吨,在粉煤灰利用上必须加大力度、扩大利用面、增加利用量、提高利用率。6.1.5煤层气的开发利用煤层气勘探开发取得了明显进展,1998年在山西沁水盆地和东北鹤岗地区共钻煤层气井11口,在屯留-003井、屯留-006井和屯留-007井获得了日产7000m3、10000m3和16000m3以上工业煤层气流,初步控制含气面积约550平方公里。勘探成果表明,该地区具备了形成大型煤层气田

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论