版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3b
1.3e
1.3h
1.6解%)(P)=0M0(P)=—PbM0(P)=P』b2+户S00
1.9解BC为二力构件,AB受有一主动力偶作用,故只能由力偶来平衡,故二者的受力图为
出,由二力平衡条件
由作用和反作用定律PE=F[=FA
4a
亚M
屋rr
1.10解JKD为二力构件,其余构件均为三力构件,受力图为
2丫=。FAxsin45°+xsin45°=0,所以%=_1/(与图中所标方向相反)
2.对于构件BGI所受三力组成的力三角形为封闭的直角三角形,所以有
F/=F;=FGxtan45°=^yFsin45。=b
3.对于构件CIJ有外(尸)=0F;x42b-F,xy/2b=0所以尸,二弓二三产
Mj(F)=OF…&b+F产2b=0所以%=-尸表示与图中所标方向相反。
4.对于构件JKDFD=FJ=^-F
1.11解杆1、2、3均为二力杆,为求三杆受力取系统为研究对象,受力如下图,并以C点为原点
建立如图d所示的坐标系。
d
FD=M!d
X=0F«COS45°=0J及2=0
EC2
・・
少=。Fo-Fcl=0,&=%=M/d
1.13解受力分析如图所示
Zy=0
Zx=o-/版+/6。=0FA=\2kN
WXW=。-/"(6〃)2-Px2〃+%=0M.=23AN
2(XX)c,
M-F•OA•sin600=0—^二1154.7N
oV3
:.FA=F;=FO=1154.7^
以BAC杆为研究对象,以B点为原点建立如图所示的坐标系,则
sin120°V3
±MB=0AB-P^BC•sinO)°=0
Fnx=1000一型衿=384.2N
£X=OFBX+P-FA•sin60°=0
2丫=0-FHY+FA•COS600=0
FB=4F;x+琦丫=693.5Ntan夕==1.503・・・。=56.4。(与Y轴夹角)
1.17解受力分析如图所示,建立以GH中点为原点,GH为y轴的坐标系。
37
工用、(产)=0Q^^AD-F^-AD=0:.F=\.2kN
8E8E
£z=oFE+FG+FH-e=0
Z%(歹)=0FG•GO-FH•HO=0:,FG=FH=Q8kN
1.18解受力分析如图所示,分别以C、D两点为原点建立坐标系。
2%.式尸)=0%二°2以8(尸)=。FAy=0
EM.v(F)=°F2r2+F,2+F3r3+F;r.-F^-F;r.=0
工〃乂(尸)=0r;a-r}a±FHX•2〃十十a)—八(2分十a)—0
;
2Mze(F)=0F(2a+2b)-F1(2a+2b)+FAX(2b-i-a)+FBXa=0
=0-FBX(2b+a)-FBXa+F;(2a+2〃)一巴(2a+22)=0
联立上述方程,解得F3=^=(^f\-F2r2)/r3
1.19解由于y轴方向不受力,则受力图如下。
15哨yZ
ZM、")=OFNrcos200+F2R-FlR=0FN=2128AN
^Mv(F)=0Fvcos20°x250+F氏x500-鸟sin15cx650+片sin15。x650=0
Fli==-1336.5N
£M/(b)=0FNsin20°x250+F&x5OO-F2cos15°x650+F}cosl5°x650=0
FBX=4131AN
ZX=0FAX-FNsin200十”而一入cos15。-Ccos15。=0FAx--505AN
\Z=0FA:+FNcos20°+Fli:-F2sin15°+7^sin15°=0FA:=—922.4N
力矩平衡,平面力系的平衡!
2.1解1.求轴力N=F=390kN=390X103N
M,390XI03X90八
2.求变形量AA/】=言=---------------=037mi
3210X103X-X672
4
A,M,390x1()3x802n_.Q
A/2=--=--------------------=0.328〃〃〃
EA1210X103X-X762
4
A/=A/,+A/2=0.047+().328=0.375/wn
2.2解各杆的轴力如图。
FABFC
F
NxF
2kNA3kNB2kNCD3kN
2.3解⑴NM、Vc.=—MkN心=—26(UN
N_-IQOxlO3
各段柱截面上的应力b.cAC=-2.5MPa
了—200x200
必--260x10375的
阮ABC200X20()
⑵柱的总变X*+智产弋片部…。
2.4解以横梁AB为研究对象,其受力分析如图所示。
FAyFB
WX,I=O^x4xsin300-i/x4x2=0用=4(RN
故钢丝绳BC的拉力FB=F】=40kN
因为人之21,而A二工N=FB=AOkN
匕]4
•八国14x40x10t
・・a>I———=J---------=17.84mm取d=18mm
、加bV4x160
2.6解木拉杆接头在长为1,距离为a的水平面可能被剪断。在接头接触处的铅垂面可能发生挤
压破坏。
根据剪切强度条件,有.=,===5°x[?=1所以I>200mm
Abl250/
根据挤压强度条件,W(T.,=—=—=<l(y]=10所以a>20mm
Apab250ci
所以接头处所需的最小尺寸为/=200mm,a=20mmo
2.8解对于每一截面有2加=0
对于图a-刀-4.5+1.5+2=0A7;=-\kNm
-7;+1.5+2=0:.T2=35kNm
-7;+2=0:.T、=2kN・m
对于图b1+3=0:.Ti=-3kNm
4+3=0:.T2=-3kNm
一丁]=0/."=-\kNm
2.9解根据已知可得,轴的转向与主动轮的转向一致。
由公式M=9549f可得
n
M.=1591.5N-MM,=318.3NMM,=M,=636.6N-m
(1)7],=-M,=-318.3^-777=M-M,=1273.2NTu=M.=636.6^-777
其扭矩图如图(a)所示。7^X=1273.2N・〃?
(2)兀=—仞2=—318.3N•利Tl3=-M2-M3=-954.9N-mT34=M4=636.6^w
其扭矩图如图(b)所示。Max=-954.9N・〃?
显然,对轴的受力有利,其最大扭矩值降低了。
2.12解两段轴所承受的扭矩为7;=7;=M=1000N•阳=1。6%."7〃7
7;
对于左端空心轴b=46MPa<[r]
,max"叱”-0.20;(1—a4)-().2x50'(1-0.64)
T_TIO6
对于右端实心轴22=7SA25MPa>[r]
0.2以-0.2x403
所以左端空心轴的强度是安全的,而右端实心轴的强度是不安全的。
2.13解①求约束反力,木梁的受力分析如图所示。
Z%=()
/^x3+3xl-3x3xl.5=0FFc=3.5kN
②作弯矩图
在AB段Z%=0M+3xx=0M=-3xkNm(0<x<l)
在BC段Mc=0-%+屋x(4-x)-"(4-x)x(4-x)/2=°
2
A72=-\.5X^-S.5x-\0kN-m(1<x<4)
由图知,截面B为危险截面其弯矩值M=3kNj7
③由梁弯曲的强度条件式可得w>—而叼=0.11
所以公""S'"’=144.22加〃取d=145mm
1()
2.14解梁的受力分析如图
P2
B1
FACAFBD
①计算约束反力ZM,=0-FAx2a-Pixa+xa=0***FA=3kN
②作弯矩图
:.M=3x
在AC段ZMc=0M}-FAX=0(0<x<l)
Z^c=0
在CB段M2-FAX+P2(X-1)=0:.M2=12-9X(1<X<2)
在BD段X,M,=6x-l8(2<x<3)
Z%7=。-M5-^(3-)=0
M3kN.m
由图知,最大弯矩发生在截面D和BMD=3kNm,
③确定危险点并进行校核
对于截面D,其上弯矩为正值,截面的应力分布如图所示,最大应力为:
My_3xlQ6x88My_3xl()6x52
D{D2=20.42M&
“拉max6=34.56MPa,bfEmax-6
Iz-7.638xlOl77.638x10
对于截血B,其上弯矩为负值,截面的应力分布如图所不,最大应力为
66
6X10X52MBy,^6xlQx88
=4().85Mp压max6=69.12MPd
-7.638x1()6I7-7.638xlO
比较以上结果得梁的最大拉、压应力为
b拉max=4O.85M'>⑸拉b压max=69.12MP”[可压
故该梁的强度是不安全的。
2.16解1.由于绞车轴在水平方向没有主动力,则该方向没有约束反力,则绞车轴的计算简图如
图ao
2.计算约束反力
y=0
SFA”B—F二0
ZM“=()P'AX0.8-PX0.4=0・・・FA=F.=0.5PN
Me=Pr=0.18PNm
3.作弯矩图和扭矩图
AC:.M=0.5Px(0<x<0.4)
在段ZMC=。M]-FAX=0}
在CB段=0-M2+^(0.8-x)=0/.M2=0AP-0.5PX(0.43X30.8)
Mi0-2p
一r1中
如图b、c,由图可知,危险截面在轴的中点。计算该截面的弯矩M和扭矩为:M=0.2P
T=-Me=-0.18P
4.确定最大许可载荷
22
°J(0.2P)+(0.18P)^H=80X106
3
MWzO.lxO.O3
・•・P<803N若%=二/则PW788N
32
・••最大许可载荷为P=803N或788N。
2.17解(1)计算约束反力与转矩。
由于圆轴的y轴方向没有主动力,则该方向没有约束反力,圆轴的计算简图如图b,皮带轮上的受
力平移到中心D处。Me=F}R-F2R=2F2R-F2R=F2R
^MX(F)=Om-Me=0・・・K=4684V
Z"八二0Fgx350-37^x650=0FB=2609.7/V
Z”,=()-F4x350-3f;x300=0AFA=-1204.57V
(2)画出弯矩图、扭矩图,如图c、do判断危险截而在轴的B点。计算出该截面的弯矩M和扭矩
T:M=%xO.35=421.6N・m,T=m=117.1N♦m.
(d)
⑶根据强度条件式
32ylM2+L
而叼=杂所以“之:=0.0409m=40.9/71777
%㈤
若取叼=。」"\则d24().7〃〃〃取圆轴的最小直径:d=41mmo
3.1解求扭矩TBC=M=2kN,mTAB=M+M=4kNm
TABMB16X4X10A0aA心
=——=-------7—=471S.3MPa
Wpl刘:7ix75
T167;_16x2xlQ6
8CC=S\.5MPa
叫叫7tx50'
3=81.5M为
4X106X7502X106X750「A人,CM。
—+-----------------=0.043rad=2.44
8OxlO3x—x75480xl03x—x504
3232
p4
3.3解求扭矩T=M=9549x-=9549x一=42.44V
n900
而极惯性矩/“=().H4
八T180°42.44x180
0..-----x----=--------------------------=0M.3O8OO//m<[r6n]i
maxGIcn80X109X0.1X304X10-12X^
・•・该轴的刚度足够c
3.5解惯性矩I=0.05D4由表3.1的第⑨项可知
545X2X103X24
)'max——0.0163m——16.3〃"九
384£/384x200xIO9x0.05x404x10,2
2xlQ3x23
=-0.026rad/m=-1.49°/m
24x200x109x0.05x4O4xIO-12
若取惯性矩I唱D,
%nax=-16.6mm=-0n=-0.027rad/m=-1.52°/m
4.1解
4.2解
(1)有四处复合钱链B、C、D、EF=3n-2PL-PH=3X7-2X10-0=1
(2)有一局部自由度GF=3n-2PL-PH=3x4-2x4-2=2
(3)有一处复合钱链CF=3n-2PL-PH=3x7-2x10-0=1
(4)存在虚约束:较链G至P及相关构件,有一处复合被链C
F=3n-2PL-PH=3x5-2x7-0=l
4.3解该冲床中i尸3,弓=4,PH=1尸=3〃-2弓一Q=3x3-2x4-l=0
显然,该冲床不能运动。其原因在于C处的钱链的运动不能达到要求,是因为构件4作直线运动,
而构件3作回转运动。考虑到构件4的运动不能改变,可改变构件3的运动使其在较链C处的运动为直
线运动,为此可再引入一个活动构件6和一个回转副,其运动简图如下图。
简易冲床(改正方案二)
F=3n-2P,-PH=3x4—2x57=1
改进后,机构的自由度和原动件数相等,所以有确定的相对运动。
5.1解(1)由已知条件可知,构件1为最短构件,构件2为最长构件
1,+12=130+250=380<13+14=200+220=420
・••与最短构件联接的锐链A、B是整转副。
(2)要得到曲柄摇杆机构,以最短杆为连架杆。
要得到双曲柄机构,以最短杆为机架。要得到双摇杆机构,以最短杆为连杆。
5.2解要得到曲柄机构摇杆机构,则最短构件为连架杆。所以构件1为最短构件。
若构件3最长,则有14<J50
,
/]+/:</4+/2
270mm<14<350mm
若构件4最长,则有14>(350
l\+,4"+,3
350mm<14<430nun
所以270mni<14<43()mni
6.1、6.2解如下图
6.3解如下图
7.1解Vda=d+2ha=(Z+2ha)m(22+2X1)m=120
d=mz=5X22=1lOmndb=dcosa=110xcos20°=103.37nini
7.2解<=dcosa=mzcosadr=d-2hf=(z-2h*-2c*)m=(z-2.5)m
25
当db>d.即mzcosa>(z-2.5)m/.z<————=41.5/.z<41
1-cosa
2S
当db<d,即mzcosa<(z-2.5)mz>-----:-----=41.5/.z>41
1-cosa
7.3解(1)Va=—(Z)+z)=—x(20+40)=60mma,不属于标准安装。
0222
(2)rr;+r;=61
Y
r'7
Li=^-=—•二r:=20.33mmr;=40.67mm
r:z.
(3)i*]=AM=2()mmr,=H^=40mm与分度圆的半径不一样大。
2-2
m,Z2
7.5解V=d+2mn=+2mnmn=——-------=2mm
cos'nn56।2
cos15°
7.6解中心距a=^(Z[+Zz)=3x(22+156)=267mm
22
对于斜齿轮r.=5(2;+,』)=267
2cos/?
z;_z2_156_78
zfz.2211
初选螺旋角B=18°
则z;=212=iz;=148.9取z;=21z;=149
实际传动比i-4-挈■-7.1相对误差小于4%。
z;21
mn(Z:+Z
实际螺旋角力=arccoS^=17.24°
・•・z;=21z;=149±17.24。
7.7解普通圆柱蜗杆传动的正确啮合条件是:
(1)在主平面内,蜗杆的轴向模数等于蜗轮的端面模数,且模数m符合标准模数系列。即巩产
(2)在主平面内,蜗杆的轴向压力角应等于蜗轮的端面压力角,且为标准压力角。即
aH~aa=a=20°
(3)蜗杆的分度圆导程角Y应等于蜗轮的螺旋角B,且旋向一致,即丫二8。
7.9解
a)判定蜗杆旋向及mb)判定蜗轮旋向及m
48
7.10解分度圆锥角3、=arctan=arctan—=71.6°»d二90。一&=18.4°
16
分度圆直径d1=mZ[=5xl6=80mm,d2=mz2=5x48=240mm
锥距R及齿宽bR=Jr:+=7402+1202=126.5mm
R
设计时,齿宽b宜取〃工一二42.2mm,。W10/〃=50nm1,取b=40皿n。
3
传动比=&=£=3
gZ116
解•・•该轮系为标定安装,且齿轮与齿轮同轴发,
7.1113
即」二+皿阳
r3=r,+2r,mz3/.z=z,+2Z=20+2X20=60
2232
k=(.洛/=60x30x78=]2.27
z/Wz;20x26x22
7.12解齿轮1至3为定轴轮系i二旦=j=60xl3°二一2
n3Z1Z;36x3654
5454
n.=--n.=--x960=-159.5r/min/.n,=n;=-159.5r/min
■32513253-
H9
而%=0,齿轮3:4、5和转臂6组成行星轮系胃胃=匕』=一警=一旦
n:n5-n6z;z469
,n=—n;=—x(-159.5)«-55r/min即转臂6的转向与齿轮1的转向相反。
6200200
7.14解1.闭式齿轮传动的主要失效形式是齿面点蚀和齿根弯曲疲劳折断。开式齿轮传动的主要
失效形式为齿面磨损和轮齿的弯曲疲劳折断,不会发生点蚀。
2.开式齿轮传动一般选择耐磨材料,闭式齿轮传动中,软面齿应选择外硬内韧的材料。
3.闭式齿轮以齿面接触疲劳强度和齿根弯曲疲劳强度作为其承载能力的计算依据。
开式齿轮传动则按齿根弯曲疲劳强度计算,并在计算中适当减低许用应力以考虑磨损的影响。
7.15解(1)11)=930r/minip=—=/.n,=—五叫=-465r/min
叫Z.,2
i2?=—=——-n3=——-n2=193.75r/min
n3Z3Z4
(2)应转动i轴,因减速器从i轴至ni轴的传动过程中,实现“减速增矩”,所以I轴的转矩最小。
(3)受力图如图所示
II
Jt2Z2
X
|X
Z3|~~Ft3
2x9549x—xl()32x9549x—xlO3
—T—564.7N
Fr2=Ft2tana=564.7xtan200=205.5N
2x9549x3竺也xQ2X9549X1,1X°,9X103
465
=__________________________=813.2N
mz32.5x20
Fr3=F(3tana=813.2xtan20°=296N
7.13解若一对齿轮的传动比和中心距保持不变,仅改变其齿数,这对齿轮的接触强度不变,而
弯曲强度将会受到影响。因为
|2000町3±1)
根据计算最大接触应力的计算公式V仇以,显然与齿数有关的参数就是U,而
U是齿数比二传动比,不改变,所以其接触强度不会改变。
_2000kTM
2
根据计算齿轮最大弯曲应力的公式bmZ],显然影响其强度最主要的参数是模数,若齿数
々增大,模数会减小得更大,而匕变化不大,综合考虑,增大齿数会增大最大弯曲应力,所以弯曲强度
会降低。
7.16解1.根据齿轮材料确定许用应力
小齿轮45钢调质、大齿轮45钢正火,由表7.7可得:取小齿轮齿面硬度HB=230,大齿轮HB二200。
由图7.42和图7.43,查得齿轮材料的接触疲劳极限应力和弯曲疲劳极限应力分别为
口而।=560MPaG〃仿“2=540MPa.。口必=210MPaa,=200MPa
,,,F/n2
查表7.8,取SH=l.0、SF=1.3,则许用应力为
gM=5^MPa=540Mpa.[cr]=\62MPa\c\=\^MPa
,,F],F2
由于大,小齿轮的接触强度相同,贝k[b〃]=*OM&
P4
I=9549—=9549x——=53.05N•m
计算小齿轮传动的转矩均720
查表7.9,取载荷系数K=L2,则
乌”=⑵。1.2x53.05x(73/25+1)
b〃=212002=438.2M&«。〃]
bud「1800x(普
252
所以大、小齿轮的接触强度足够。
验算齿根的弯曲应力
根据齿数由表7.11查得丫灯=2.64,心=2.22,则
2000A7;/2000x1.2x53.05x2.64<
22
bmz}80x25x4MPa<[crFI]
。尸,=bpi=10.5x2・22=8.8
J2.64MPa<[aF2]
所以大、小齿轮的弯曲强度足够。
7.17解(1)Z3与z2的旋向相同,即同为左旋或右旋。
要使“小则翳中而八券・.SinAmn2Z2
(2)=
sin63mn3z3
而外=四=15。・•・63=8.3。
7.18解L计算许用应力
①查表7.7小齿轮40Cr,<HB=260大齿轮45钢调质,取HB=230
②查表7.8取SH=L0,SF=1.3
③查图7.42(b)<r//liml=7WMPahm2=560IVIPa
查图7.43(b)<TFliinl=21QMPa唳“2=210MPa
④[。〃[=卓也=710MP〃[cr1I2]=里"=560MPa
3〃
EJ=生皿=208MPafaE21=%皿=162MPa
SpSF
2.按接触强度确定转矩T1
查表7.9K=1.4
z_108
2=4.5
Z7-^4m“Z]3x24
=72.97nun
cos夕cos9°22'
町(〃+D+1OH-[a]=[a]=56OMPa
%=18980•I-HI1>I^2JHH2
bud;"
1.41(4.5+1)456G...<217N-m
orH=18980
80x4.5x72.9721
3.按齿根弯曲疲劳强度确定T1
z33
查表7.11vi=Z!/cos/?=24.99丫口=2.64,zV2=z2/cos=112.4yF2=2.20
-=—=0.0127<=—=0.0136
[crAl]208[crF2]162
・••大齿轮强度较弱,按大齿轮的许用应力计算。
.外」器74”.1560x1.4x77x2.20・
80x24x3?
4.确定功率Pmax
由乂上计算可知TImax=217N-m
f9549P
1=---------
11
而;.Pma=Tlnrin1/9549=217x750/9549=17kW
8.2解(1)螺杆与滑板均为右旋,其位移螺杆s水平向右,滑板sz水平向左。
滑板移动的距离L=s「S2=P「P2=1-0.75=0.25mm与s1同向即水平向右。
(2)螺杆为左旋,滑板为右旋,则两者的位移&、sz均水平向左。
滑板移动的距离L=sl+s2=P1+P2=l+0.75=1.75mm水平向左。
8.4答:1.由于带具有弹性,在传动中又有拉力差,摩擦力使带在松、紧两边发生不同性质的拉伸
变形,引起与轮面的相对滑动。
2.弹性滑动是局部带在局部轮面上发生的相对滑动,打滑则是整个带在整个轮面上发生的相对滑
动。
3.打滑使带传动不能正常工作,应避免,也可以避免。弹性滑动则可以正常工作,是不可避免的。
8.8解
从动
8.9答:对于常见的外啮合齿式棘轮机构,它主要由棘轮、主动棘爪、止回棘爪和机架组成。在棘
轮机构中,一般情况下棘爪为原动件,当主动摇杆逆时针摆动时,摇杆上较接的主动棘爪插入棘轮的齿
内,推动棘轮作同向转动一定角度。当主动摇杆顺时针摆动时,止回棘爪阻止棘轮反向转动,此时主动
棘爪在棘轮的齿背上轻轻滑回原位,棘轮静止不动。为保证棘爪工作可靠,常利用弹簧使棘爪紧压齿面。
运动特点:主动件一般作往复摆动,从动棘轮作单向间歇运动。
8.11解ni=60r/min=lr/s,拨盘运转一周的时间ti=l/ni=ls
而一”二z-2
~^L
8.12答:不完全齿轮机构的主动轮是只有一个或几个齿的不完全齿轮,从动轮由正常齿和带锁止
弧的厚齿彼此相间地组成。当主动轮有齿部分作用时,从动轮就转动;当主动轮的无齿圆弧部分作用时,
从动轮停止不动。为了防止从动轮在停歇期间游动,两轮轮缘上均装有锁止弧。
运动特点:一般主动轮作连续回转运动,从动齿轮作时转时停的间歇运动。
9.2解该螺栓联接为受横向载荷的紧螺栓联接,所以应满足的条件为:”等'⑻
而上k4R,查表知M23的螺栓的小径d】=17.294廊,取K=l.2
fmz
-r-.7dXIr、7CX17.2941LC—r«<■w▼
QQ<——-[cr]=---------------x150=27.1x10N=27.1kN
°5.25.2
••RV詈Qo="x27」='kN
・•・允许传递的载荷R=18.lkN
9.3解1.载荷分析与螺钉材料
该螺钉联接类似于不控制预紧力的受轴向力的紧螺桧联接,
查表9.7,螺钉材料Q235的屈服极限外=240MPa
2.每个螺钉的轴向载荷
螺钉的工作载荷F=Q/4=10/4=2.5kN,剩余预紧力为Q;=0.4F=0.4x2.5=IkN
螺钉所受的总拉力为Q=F+Q[=2.5+1=3.5kN
3.螺钉直径
由于螺钉的轴向总拉力不大,按照经验初选螺钉为M10。
①根据碳钢螺钉直径€1=100101,按照装配时不控制预紧力,从表9.8取
[0]=0.3os=0.3X240=72MPa
②计算螺钉直径为JljQ15.2x3500=897mni
1V^l^lV"72
原来估计的MIO(d,=8.376mm)稍偏小。
③再估计螺钉为M12,按照装配时不控制预紧力,从表9.8取
[。]=0.3os=0.3X240=72MPad,>匡型「.2x35匝=897mm
V”72
选M12,其d产10.106mm,与估计值相符,计算有效。
9.4解1.选取平键尺寸
选择平键为B型普通平键,根据轴的直径d=85mm,查附表9.8知平键的断面尺寸:
宽度b=22mm,高度h=14mni;当轴毂尺寸B=150mm,取键长L=140mni。
2.校核键的联接强度
B型普通平键的工作长度1=L。
由平键联接的强度条件外=生=生=4x3000x1()3=72.032.2
dhldhL85x14x140
按载荷性质及轮毂材料,查表9.11得许用挤压应力为【%,]=50~60N/〃〃/。
・•・6尸〉0",故可知键联接强度不足。
3.改进措施
采用按18(T布置的两个平键,考虑到载荷分配不均,按1.5个键计算。此时,工作应力
卫电=48.02N/mm2<0],这样就满足了联接强度。
9.7答:第(3)种情况主动轴可以带动从动轴,因为
定向离合器的工作原理:外环按逆时针转动一滚柱滚动一(楔紧)一内环转动(结合),
外环顺时针转,滚柱不“楔紧”->分离。
而第(1)、(2)两种情身都会使滚柱不"楔紧”,使内外环分离。第(3)种情况就相当于外环
按相对于内环逆时针转动,这时滚柱滚动楔紧,使内环一起转动。
10.1答:弹簧的主要功能是缓冲吸振,控制运动,储存和释放能量,有时也用于测力装置。如车
辆中的缓冲弹簧用来缓冲吸振,内燃机中的阀门弹簧用来控制运动,钟表和仪表中的发条和游丝(盘形
弹簧)用来储存和释放能量,弹簧秤,测力器中的弹簧则作为测力装置。
10.3答:弹簧指数是指弹簧中径与簧丝直径的比值,即C=弹簧指数C对刚度的影响颇大。C
d
值若取得过小,则弹簧丝弯曲变形过大,易产生微裂纹,且增大截面内侧的剪应力;C值过大会使弹簧
太软,不便应用。C值的范围为4〜16,C值的常用范围为5〜8。
10.4解:1.计算弹簧指数C=?=—=8
d5
2.计算曲度系数些”=1.184
4C-4C
3.簧丝许用应力查表10.3B级碳素弹簧钢丝。尸1320N/mm2
查表10.2H类载荷,取[T]=0.40b=528N/mm‘
4.最大工作载荷W
8PC
T=K<[r]
7rd~
<W4x52x528
P=547.3N
8kc-8xl.184x8
P„=.547.3N
5.最大变形量人
查表10.2G=79X10Wmm2
8PC3n8x547,3x83x6.5
n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风险导向下企业内部财务控制的改进措施研究
- 餐饮应急预案
- 监控施工方案范文(6篇)
- 二手机械销售合同模板
- KTV装修合同执行管理制度范文
- 不锈钢建筑材料加工合同
- 交通损害赔偿合同示例
- 业务合作及分成合同书
- 个人创业借款合同条款
- ISO质量管理体系认证服务合同
- 《民航服务沟通技巧》教案第10课儿童旅客服务沟通
- WTC瓦斯突出参数仪操作规程
- 2022年云上贵州大数据(集团)有限公司招聘笔试试题及答案解析
- 10kV中压开关柜知识培训课件
- 《工程测试技术》全套教学课件
- 自卸车司机实操培训考核表
- 教师个人基本信息登记表
- 中考现代文阅读理解题精选及答案共20篇
- ESD测试作业指导书-防静电手环
- 高频变压器的制作流程
- 春季开学安全第一课PPT、中小学开学第一课教育培训主题班会PPT模板
评论
0/150
提交评论