专题26期中全真模拟卷06-2020-2021学年八年级数学上学期期中考试高分直通车_第1页
专题26期中全真模拟卷06-2020-2021学年八年级数学上学期期中考试高分直通车_第2页
专题26期中全真模拟卷06-2020-2021学年八年级数学上学期期中考试高分直通车_第3页
专题26期中全真模拟卷06-2020-2021学年八年级数学上学期期中考试高分直通车_第4页
专题26期中全真模拟卷06-2020-2021学年八年级数学上学期期中考试高分直通车_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20202021学年八年级上学期数学期中考试高分直通车【人教版】专题2.6人教版八年级数学上册期中全真模拟卷06姓名:__________________班级:______________得分:_________________注意事项:本试卷满分120分,试题共26题,选择12道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•三台县一模)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解析】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.(2019秋•恩施市期末)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解析】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.(2020春•魏县期末)下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形【分析】稳定性是三角形的特性.【解析】根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.4.(2019秋•埇桥区期末)如图,一副分别含有60°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠BAC=45°,∠EDC=60°,则∠BFD的度数是()A.15° B.25° C.30° D.10°【分析】先由平角的定义求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解析】∵Rt△CDE中,∠C=90°,∠EDC=60°,∴∠BDF=180°﹣60°=120°,∵∠C=90°,∠BAC=45°,∴∠B=45°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.5.(2019秋•增城区期中)不能说明两个三角形全等的条件是()A.三边对应相等 B.两边及其夹角对应相等 C.两角及其夹边对应相等 D.三角对应相等【分析】运用全等三角形的判定方法结合已知条件逐项分析,即可解答.【解析】A、三边对应相等,符合SSS,能推出两个三角形全等;B、两边及其夹角对应相等,符合SAS,能推出两个三角形全等;C、两角及其夹边对应相等,符合ASA,能推出两个三角形全等;D、三角对应相等满足AAA,不能推出全等三角形,是错误的.故选:D.6.(2019秋•莱山区期末)若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4 B.5 C.6 D.8【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【解析】根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B.7.(2019秋•长清区期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解析】如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=12AB•DE=12×10解得DE=3,∴CD=3.故选:A.8.(2020•建湖县模拟)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若∠A=25°,则∠CDBA.25° B.50° C.60° D.90°【分析】根据基本尺规作图得到直线MN是线段AB的垂直平分线,根据线段的垂直平分线的性质得到DA=DB,根据三角形的外角的性质解答即可.【解析】由作图的步骤可知,直线MN是线段AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=25°,∴∠CDB=∠DBA+∠A=50°,故选:B.9.(2018春•章丘区期末)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形 B.等边三角形 C.不等边三角形 D.不能确定形状【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【解析】∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B.10.(2019•济源一模)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90° B.95° C.100° D.105°【分析】由CD=AC,∠A=50°,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.【解析】∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=12∠ADC=∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.11.(2019秋•费县期中)已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.上述说法中,正确的有()A.3个 B.2个 C.1个 D.0个【分析】利用有一个角为60°的等腰三角形为等边三角形可判断①正确;由∠A=60°,∠B=∠C,利用三角形的内角和定理得到∠B=∠C=60°,即三个内角相等,可得出三角形ABC为等边三角形,判断②正确;由HL判定出直角三角形ACD与直角三角形AEC全等,由全等三角形的对应角相等得到∠ACE=∠BAC=60°,再利用三角形的内角和定理得到第三个角也为60°,即三内角相等,可得出三角形ABC为等边三角形,判断③正确.【解析】①若添加的条件为AB=AC,由∠A=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△ABC为等边三角形;②若添加条件为∠B=∠C,又∵∠A=60°,∴∠B=∠C=60°,∴∠A=∠B=∠C,则△ABC为等边三角形;③若添加的条件为边AB、BC上的高相等,如图所示:已知:∠BAC=60°,AE⊥BC,CD⊥AB,且AE=CD,求证:△ABC为等边三角形.证明:∵AE⊥BC,CD⊥AB,∴∠ADC=∠AEC=90°,在Rt△ADC和Rt△CEA中,AC=∴Rt△ADC≌Rt△CEA(HL),∴∠ACE=∠BAC=60°,∴∠BAC=∠B=∠ACB=60°,∴AB=AC=BC,即△ABC为等边三角形,综上,正确的说法有3个.故选:A.12.(2018秋•宣城期末)如图,已知线段AB=18米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走2米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.4 B.6 C.4或9 D.6或9【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【解析】当△APC≌△BQP时,AP=BQ,即18﹣x=2x,解得:x=6;当△APC≌△BPQ时,AP=BP=12AB=此时所用时间为9秒,AC=BQ=18米,不合题意,舍去;综上,出发6秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.(2019秋•朝阳区期中)在平面直角坐标系xOy中,点C(3,﹣1),则点C关于y轴对称点的坐标为(﹣3,﹣1).【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解析】点C(3,﹣1),则点C关于y轴对称点的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).14.(2019秋•莱西市期中)如图,在△ABC中,D为AB延长线上一点,DE⊥AC于E,∠C=40°,∠D=20°,则∠ABC的度数为70°.【分析】由直角三角形的性质可求∠A=70°,由三角形内角和定理可求解.【解析】∵DE⊥AC,∠D=20°,∴∠A=70°,∵∠A+∠C+∠ABC=180°,∴∠ABC=180°﹣40°﹣70°=70°,故答案为70°.15.(2020春•吴江区期中)一个多边形的内角和与外角和的和是720°,那么这个多边形的边数n=4.【分析】首先设这个多边形的边数有n条,根据多边形内角和公式(n﹣2)•180°可得内角和,再根据外角和为360°可得方程(n﹣2)•180+360=720,再解方程即可.【解析】设这个多边形的边数有n条,由题意得:(n﹣2)•180+360=720,解得:n=4.故答案为:4.16.(2019秋•常熟市期中)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=6,DC=8,DE=20,则FG=6.【分析】只要证明EG=EB,DF=DC即可解决问题.【解析】∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵BE=6,DC=8,DE=20,∴FG=DE﹣EG﹣DF=DE﹣BE﹣CD=20﹣6﹣8=6,故答案为6.17.(2020春•南岗区校级期中)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为3cm.【分析】先根据角平分线的性质得到DE=DF,再利用三角形面积公式得到12×AB×DE+12×DF×AC=21,所以12×8×DE+1【解析】∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABD+S△ACD=S△ABC,∴12×AB×DE+12×DF即12×8×DE+12×DE∴DE=3(cm).故答案为3.18.(2020春•福田区期中)如图,已知等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO=∠ACO;②∠APO+∠PCB=90°;③PC=PO;④AO+AP=AC;其中正确的有①②③④.(填上所有正确结论的序号)【分析】连接BO,由线段垂直平分线的性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出∠APO=∠ACO,∠APO+∠DCO=30°,由三角形的内角和定理,角的和差求出∠POC=60°,再由等边三角的判定证明△OPC是等边三角形,得出PC=PO,∠PCO=60°,推出∠APO+∠PCB=90°,由角的和差,等边三角形的判定与性质,全等三角形的判定与性质,线段的和差和等量代换求出AO+AP=AC,即可得出结果.【解析】连接BO,如图1所示:∵AB=AC,AD⊥BC,∴BO=CO,∴∠OBC=∠OCB,又∵OP=OC,∴OP=OB,∴∠OBP=∠OPB,又∵在等腰△ABC中∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠OBC+∠OBP=∠OCB+∠ACO,∴∠OBP=∠ACO,∴∠APO=∠ACO,故①正确;又∵∠ABC=∠PBO+∠CBO=30°,∴∠APO+∠DCO=30°,∵∠PBC+∠BPC+∠BCP=180°,∠PBC=30°,∴∠BPC+∠BCP=150°,又∵∠BPC=∠APO+∠CPO,∠BCP=∠BCO+∠PCO,∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,又∵∠POC+∠OPC+∠OCP=180°,∴∠POC=60°,又∵OP=OC,∴△OPC是等边三角形,∴PC=PO,∠PCO=60°,故③正确;∴∠APO+∠DCO+∠PCO=30°+60°,即:∠APO+∠PCB=90°,故②正确;在线段AC上截取AE=AP,连接PE,如图2所示:∵∠BAC+∠CAP=180°,∠BAC=120°,∴∠CAP=60°,∴△APE是等边三角形,∴AP=EP,又∵△OPC是等边三角形,∴OP=CP,又∵∠APE=∠APO+∠OPE=60°,∠CPO=∠CPE+∠OPE=60°,∴∠APO=∠EPC,在△APO和△EPC中,AP=∴△APO≌△EPC(SAS),∴AO=EC,又∵AC=AE+EC,AE=AP,∴AO+AP=AC,故④正确;故答案为:①②③④.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•市北区期末)如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是9.【分析】(1)根据关于y轴对称的点的坐标特点画出△A1B1C1即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【解析】(1)如图所示;(2)S△ABC=4×5-12×2×4-12×3=20﹣4-=9.故答案为:9.20.(2020•开远市模拟)已知:如图,点B、F、C、E在一条直线上,∠A=∠D,AC=DF且AC∥DF求证:△ABC≌△DEF.【分析】先证出∠ACB=∠DFE,再由已知条件即可证明△ABC≌△DEF.【解析】证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,∠A∴△ABC≌△DEF(ASA).21.(2019秋•樊城区期末)如图,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°,求∠DAC的度数.【分析】根据三角形的外角的性质得到∠4=∠1+∠2,根据三角形内角和定理计算即可.【解析】∠4=∠1+∠2,∠1=∠2,∴∠4=2∠1,∵∠3=∠4,∴∠3=2∠1,∴180°﹣4∠1+∠1=66°,解得,∠1=38°,∴∠DAC=66°﹣∠1=28°.22.(2019秋•平山县期末)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.【分析】首先可证明Rt△BDE≌Rt△DCF(HL)再根据三角形角平分线的逆定理求得AD是角平分线即可.【解析】证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE和Rt△CDF是直角三角形.BD=∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.23.(2019秋•来凤县期末)已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)若BC=8,求四边形AFDE的面积.【分析】(1)连接AD,证明△BFD≌△AED,根据全等三角形的性质即可得出DE=DF;(2)根据△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=12S△【解析】证明:(1)连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,DB=CD,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD,∠ADB=90°,在△DAE和△DBF中,AE=∴△DAE≌△DBF(SAS),∴DE=DF;(2)∵△DAE≌△DBF,∴四边形AFDE的面积=S△ABD=12S△∵BC=8,∴AD=12BC=∴四边形AFDE的面积=S△ABD=12S△ABC=24.(2019春•杜尔伯特县期末)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.【解析】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,BD=∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,CD=∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.25.(2019秋•河东区期中)已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,E是AC上一点,连结EB.(1)如图1,若点E在线段AC上,过点A作AM⊥BE,垂足为M,交BO于点F.求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【分析】(1)根据等腰直角三角形的性质和全等三角形的判定得出Rt△BOE≌Rt△AOF,进而证明即可.(2)根据等腰直角三角形的性质和全等三角形的判定得出Rt△BOE≌Rt△AOF,进而解答即可.【解析】(1)证明:∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF,∴OE=OF;(2)OE=OF成立;∵三角形ABC是等腰直角三角形,AB=BC,∴∠BAC=∠ACB=45°又点O是AC边上的中点,∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°∴∠BAC=∠ABO,∴OB=OA,又∵AM⊥BE,∴∠F+∠MBF=90°=∠B+∠OBE,又∵∠MBF=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论