贵州省贵阳第一中学2024年高三5月联考-数学试题试卷_第1页
贵州省贵阳第一中学2024年高三5月联考-数学试题试卷_第2页
贵州省贵阳第一中学2024年高三5月联考-数学试题试卷_第3页
贵州省贵阳第一中学2024年高三5月联考-数学试题试卷_第4页
贵州省贵阳第一中学2024年高三5月联考-数学试题试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省贵阳第一中学2024年高三5月联考-数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要2.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.3.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列4.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4 B.8 C.9 D.275.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,6.已知是定义在上的奇函数,当时,,则()A. B.2 C.3 D.7.已知数列满足,(),则数列的通项公式()A. B. C. D.8.已知,若则实数的取值范围是()A. B. C. D.9.已知,则()A. B. C. D.10.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.11.若为纯虚数,则z=()A. B.6i C. D.2012.已知是等差数列的前项和,,,则()A.85 B. C.35 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.14.已知实数满约束条件,则的最大值为___________.15.已知,记,则的展开式中各项系数和为__________.16.如图梯形为直角梯形,,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.18.(12分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.19.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.20.(12分)如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知数列是各项均为正数的等比数列,,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,为数列的前项和,记,证明:.22.(10分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.2、C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.3、D【解析】

由折线图逐项分析即可求解【详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题4、D【解析】

设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,,,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,,在中,由勾股定理得:,,解得,,故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.5、D【解析】

根据指数函数的图象和特征以及图象的平移可得正确的选项.【详解】从题设中提供的图像可以看出,故得,故选:D.【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.6、A【解析】

由奇函数定义求出和.【详解】因为是定义在上的奇函数,.又当时,,.故选:A.【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键.7、A【解析】

利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.8、C【解析】

根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,9、C【解析】

利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.10、A【解析】

点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.11、C【解析】

根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.12、B【解析】

将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.14、8【解析】

画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.15、【解析】

根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.16、【解析】

联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,,,,,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.18、(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1)由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增.③若,即,同理在单调递减,在单调递增(3)由(1)知,所以,令,则对恒成立,所以在区间内单调递增,所以恒成立,所以函数在区间内单调递增.假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,设,,则对恒成立,所以函数在区间内单调递增,故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.19、(1):,:;(2)【解析】

(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【详解】(1)的直角坐标方程为,即,则的极坐标方程为.曲线的普通方程为.(2)直线的参数方程为(为参数,为的倾斜角),代入曲线的普通方程,得.设,对应的参数分别为,,所以,在的两侧.则.【点睛】本小题主要考查直角坐标化为极坐标,考查参数方程化为普通方程,考查直线参数方程,考查直线参数的几何意义,属于中档题.20、(1)证明见解析(2)【解析】

(1)解法一:作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.(2)利用平面和平面法向量,计算出二面角的余弦值.【详解】(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,则,,,,,,,,,,,.(1)设平面的一个法向量为,则,令,则,.∴,又,∵,,又平面,平面.(2)设平面的一个法向量为,则,令,则,.∴.同理可算得平面的一个法向量为∴,又由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论