版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级第一学期数学期末考试试题一、选择题。(每小题只有一个正确答案)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B. C. D.3.已知点(3,﹣4)在反比例函数的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)4.若关于的一元二次方程有两个不相等的实数根,则的取值范围是(
)A.B.且C.D.且5.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等6.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°7.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm8.函数与在同一直角坐标系中的图象可能是()A.B.C.D.9.下列方程中,没有实数根的是()A.x2﹣2x﹣3=0B.(x﹣5)(x+2)=0C.x2﹣x+1=0D.x2=110.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm二、填空题11.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是_____.12.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.13.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为______.14.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.15.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.16.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是_____.三、解答题17.解方程:(x+3)2=2x+6.18.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?19.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.(1)求11、12两月份平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.(1)求证:PD∥CB;(2)若AB=26,EB=8,求CD的长度.21.如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.22.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.23.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.24.如图所示,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,CD=,求劣弧BD的长;(3)若AC=2,BD=3,求AE的长.25.如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.参考答案1.D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.B【详解】试题解析:∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是故选B.考点:概率公式.3.C【详解】试题解析:∵反比例函数图象过点(3,-4),即k=−12,A.∴此点不在反比例函数的图象上,故本选项错误;B.∴此点不在反比例函数的图象上,故本选项错误;C.∴此点在反比例函数的图象上,故本选项正确.D.∴此点不在反比例函数的图象上,故本选项错误;故选C.4.B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:解得:且故选:B.【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.5.A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.
故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.7.B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.8.B【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【详解】解:A、由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误.D、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误;故选:B.【点睛】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.9.C【分析】分别计算出各选项中方程的判别式或方程的根,从而做出判断.【详解】解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等的实数根,不符合题意;B.方程(x﹣5)(x+2)=0的两根分别为x1=5,x2=﹣2,不符合题意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根,符合题意;D.方程x2=1的两根分别为x1=1,x2=﹣1,不符合题意;故选:C.【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.10.D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.11.(﹣2,3).【解析】【分析】根据坐标轴的对称性即可写出.【详解】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).【点睛】此题主要考查直角坐标系内的坐标变换,解题的关键是熟知直角坐标系的特点.12.2【解析】分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.13.【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.14.y1<y2【分析】根据双曲线所在的象限,得出y随x的增大而增大,即可判断.【详解】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y2,故答案为:y1<y2.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数在各象限的增减性.15.120°【分析】利用圆周角定理得到∠BAC=∠BOC,再利用∠BAC+∠BOC=180°可计算出∠BOC的度数.【详解】解:∵∠BAC和∠BOC所对的弧都是,∴∠BAC=∠BOC∵∠BAC+∠BOC=180°,∴∠BOC+∠BOC=180°,∴∠BOC=120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.16.y=2x﹣8【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO+∠BAO=∠BAO+∠CAD,∴∠ABO=∠CAD,在△ACD和△BAO中,∴△ACD≌△BAO(AAS)∴AD=OB=2,CD=OA=4,∴C(6,4)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,∴∴直线AC的解析式为y=2x﹣8.故答案为:y=2x﹣8.【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C的坐标是解题的关键,难度中等.17.x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3),(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0,∴x1=﹣3,x2=﹣1.18.两个小球的号码相同的概率为.【解析】【试题分析】利用树状图求等可能事件的概率,树状图见解析.【试题解析】画树状图得:
∵共有6种等可能的结果,这两个小球的号码相同的有2情况,
∴这两个小球的号码相同的概率为:.19.(1)10%;(2)会跌破10000元/m2.【分析】(1)设11、12两月平均每月降价的百分率是x,那么11月份的房价为14000(1-x),12月份的房价为14000(1-x)2,然后根据12月份的11340元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出今年2月份商品房成交均价,然后和10000元/m2进行比较即可作出判断.【详解】(1)设11、12两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),12月份的成交价是:14000(1-x)2,∴14000(1-x)2=11340,∴(1-x)2=0.81,∴x1=0.1=10%,x2=1.9(不合题意,舍去)答:11、12两月平均每月降价的百分率是10%;(2)会跌破10000元/m2.如果按此降价的百分率继续回落,估计今年2月份该市的商品房成交均价为:11340(1-x)2=11340×0.81=9184.5<10000,由此可知今年2月份该市的商品房成交均价会跌破10000元/m2.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20.(1)证明见解析;(2)CD=24.【解析】【分析】(1)欲证明PD∥BC,只要证明∠P=∠CBF即可;(2)由△ACE∽△CBE,可得,求出EC,再根据垂径定理即可解决问题.【详解】(1)证明:∵FC=FB,∴∠C=∠CBF,∵∠P=∠C,∴∠P=∠CBF,∴PD∥BC.(2)连接AC,∵AB是直径,∴∠ACB=90°,∵AB⊥CD,∴CE=ED,∠AEC=∠CEB=90°,∵∠CAE+∠ACE=90°,∠ACE+∠BCE=90°,∴∠CAE=∠BCE,∴△ACE∽△CBE,∴,∴,∴EC2=144,∵EC>0,∴EC=12,∴CD=2EC=24.【点睛】本题考查圆周角定理,垂径定理,平行线的判定,等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(1)反比例函数的解析式为:y=;一次函数的解析式为:y=x﹣3;(2)S△AOB=;(3)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【分析】(1)把A的坐标代入y=,求出反比例函数的解析式,把A的坐标代入y=x+b求出一次函数的解析式;(2)求出D、B的坐标,利用S△AOB=S△AOD+S△BOD计算,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)∵反比例函数y=的图象过点A(4,1),∴1=,即k=4,∴反比例函数的解析式为:y=.∵一次函数y=x+b(k≠0)的图象过点A(4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB=S△AOD+S△BOD=×3×4+×3×1=;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.22.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.23.(1)y=-x2+2x+3.(2)P的坐标(1,2).(3)存在.点M的坐标为(1,),(1,-),(1,1),(1,0).【分析】(1)可设交点式,用待定系数法求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解【详解】(1)∵A(-1,0)、B(3,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+1)(x-3).又∵C(0,3)经过抛物线,∴代入,得3=a(0+1)(0-3),即a=-1.∴抛物线的解析式为y=-(x+1)(x-3),即y=-x2+2x+3.(2)连接BC,直线BC与直线l的交点为P.则此时的点P,使△PAC的周长最小.设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入,得:,解得:.∴直线BC的函数关系式y=-x+3.当x-1时,y=2,即P的坐标(1,2).(3)存在.点M的坐标为(1,),(1,-),(1,1),(1,0).∵抛物线的对称轴为:x=1,∴设M(1,m).∵A(-1,0)、C(0,3),∴MA2=m2+4,MC2=m2-6m+10,AC2=10.①若MA=MC,则MA2=MC2,得:m2+4=m2-6m+10,得:m=1.②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±.③若MC=AC,则MC2=AC2,得:m2-6m+10=10,得:m=0,m=6,当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的M点,且坐标为(1,),(1,-),(1,1),(1,0).24.(1)见解析;(2);(3)AE=【分析】(1)如图1,连接OD,由等腰三角形的性质可证∠B=∠ODB=∠CAD,由直角三角形的性质可求∠ADO=90°,可得结论;(2)分别求出OD的长度和∠DOB的度数,再由弧长公式可求解;(3)通过证明ACD∽BDE,可得,设CD=2x,DE=3x,由平行线的性质可求x=,由勾股定理可求AB的长,即可求解.【详解】解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴AD=2CD=3,∠DAB=30°,∴AD=OD,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴ACD∽BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB==2,∵DE∥AC,∴,∴AE=.【点睛】此题考查的是圆的综合大题、勾股定理和相似三角形的判定及性质,掌握切线的判定定理、弧长公式圆周角定理及推论、勾股定理和相似三角形的判定及性质是解决此题的关键.25.(1)y=-x2+4x+5(2)m的值为7或9(3)Q点的坐标为(﹣2,﹣7)或(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度商品房预售合同及房产证办理与产权转移及物业管理服务协议3篇
- 2024版标准化第三方担保借款合同标准化模板3篇
- 2024LNG运输船舱清洁及消毒服务合同范本2篇
- 2024版专业石材翻新及保洁服务合同范本2篇
- 2024年度钢筋工程新型材料研发与应用合同3篇
- 2024年电梯安装、维保及应急响应服务合同范本3篇
- 2024年特色酒吧店长招聘合同样本
- 2024年三旧改造建设项目合作协议书范本-教育配套提升3篇
- 2024年创意团队聘用协议2篇
- 2024年净水设备销售与终身售后服务综合保障合同3篇
- 广东省东莞市2023-2024学年八年级上学期期末英语试题
- 中小学人工智能教育的重要性与知识体系梳理
- 地铁运营公司工务线路质量评定标准
- 感染性休克急诊处理课件
- 历史七年级上学期期末试卷含答案
- 【基于抖音短视频的营销策略分析文献综述2800字(论文)】
- 2021-2022学年度西城区五年级上册英语期末考试试题
- 《组织行为学》(本)形考任务1-4
- 广东省广州市白云区2022-2023学年九年级上学期期末语文试题
- 剧本-进入黑夜的漫长旅程
- 化肥购销合同范本正规范本(通用版)
评论
0/150
提交评论