版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第07讲全等三角形中手拉手(旋转)模型【应对方法与策略】【基本模型】一、等边三角形手拉手出全等图1图2图3图4二、等腰直角三角形手拉手出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4【多题一解】一.解答题(共13小题)1.(2022•金平区一模)如图,AB、CD为⊙O的直径,AB⊥CD,点E为上一点,点F为EC延长线上一点,∠FAC=∠AEF.连接ED,交AB于点G.(1)证明:AF为⊙O的切线;(2)证明:AF=AG;(3)若⊙O的半径为2,G为OB的中点,AE的长.2.(2022•兰州模拟)如图,△ABC内接于⊙O,AB是⊙O的直径,AD平分∠CAB交⊙O于点D,在OD的延长线上存在一点E,使得∠CED=∠B,连接CD.(1)求证:CE是⊙O的切线;(2)当CE=CB时,判断四边形ACDO的形状并说明理由.3.(2022•海淀区二模)已知AB=BC,∠ABC=90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE+DE=AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.4.(2022•南平模拟)如图,BD是⊙O的直径,=,点C是半圆上一动点,且与点A分别在BD的两侧.(1)如图1,若=5,BD=4,求AC的长;(2)求证:CD+BC=AC.5.(2022•黔东南州一模)综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为;②线段CM,AE,BE之间的数量关系为.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为.6.(2022•威县校级模拟)如图,已知在△ABC中,∠BAC=120°,AB=AC=6,D是线段BC上一点(不与点B,C重合),连接AD,将线段AD绕点A逆时针旋转120°得到线段AE,连接CE,DE.设∠BAD=α.(1)求证:△ABD≌△ACE;(2)求AD长度的最小值;(3)用含α的代数式表示∠DEC;(4)若△ABD的外心在该三角形的内部时,m°<α<n°,直接写出m,n的值.7.(2022•黄冈二模)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?8.(2022•邵阳模拟)旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.【一题多解】1.(2022•郑州二模)如图1,△ABC是等腰直角三角形,AB=AC=2,∠BAC=90°.点D是BC边上一动点,连接AD,将AD绕点A逆时针旋转90°到AE,连接CE.(1)求证:CD+CE=CA.(2)如图2,连接DE,交AC于点F.①求证:CD•CE=CF•CA;②当△CEF是等腰三角形时,请直接写出BD的长.2.(2022•汉寿县一模)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E、F分别为AB,AC的中点,D为线段EF上一动点(不与点E,F重合),将线段AD绕点A逆时针方向旋转90°得到AN,连接NC,DB.(1)证明:△ABD≌△ACN;(2)如图2,连接ND,NF,AF与ND相交于点M.①证明:在点D的运动过程中,总有∠DFN=90°;②若,当ED的长度为多少时,△AMN为等腰三角形?3.(2022•顺城区模拟)如图,△ABC中,CA=CB,∠ACB=60°,MB⊥BC,垂足为B,点D在直线BM上,连接CD,将线段CD绕点C逆时针旋转60°,得到线段CE,连接DE,直线DE与直线AB相交于点F.(1)连接AE,请直接写出线段AE与线段BD的数量关系;(2)猜想线段EF与线段DF的数量关系,并说明理由;(3)若CA=CB=5,AF=,请直接写出线段BD的长.4.(2022•沈阳)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.5.(2022•十堰模拟)(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《知识产权培训》课件
- 《种酿酒白葡萄》课件
- 《诊断原则》课件
- 单位管理制度集合大全【人员管理】
- 单位管理制度合并选集员工管理篇
- 单位管理制度分享合集【员工管理篇】十篇
- 单位管理制度分享大合集【员工管理篇】
- 单位管理制度范例汇编【员工管理】十篇
- 七年级英语SpringFestival课件
- 单位管理制度呈现大全【员工管理篇】
- 承德市承德县2022-2023学年七年级上学期期末历史试题【带答案】
- CJT511-2017 铸铁检查井盖
- 转科患者交接记录单
- 现代汉语智慧树知到期末考试答案章节答案2024年昆明学院
- 人教版六年级数学(上册)期末调研题及答案
- 舞蹈疗法在减少压力和焦虑中的作用
- 计算机应用专业大学生职业生涯规划
- 设备的故障管理
- 女性妇科保健知识讲座
- 《电力系统治安反恐防范要求 第3部分:水力发电企业》
- 2024年小学教师听课、评课制度
评论
0/150
提交评论