87均值与方差在生活中的运用(基础)(原卷版)_第1页
87均值与方差在生活中的运用(基础)(原卷版)_第2页
87均值与方差在生活中的运用(基础)(原卷版)_第3页
87均值与方差在生活中的运用(基础)(原卷版)_第4页
87均值与方差在生活中的运用(基础)(原卷版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.7均值与方差在生活中的运用(基础)1.(2021·贵州高三一模(理))2020年遵义市高中生诗词大赛如期举行,甲、乙两校进入最后决赛的第一环节.现从全市高中老师中聘请专家设计了第一环节的比赛方案:甲、乙两校从6道不同的题目中随机抽取3道分别作答,已知这6个问题中,甲校选手只能正确作答其中的4道,乙校选手正确作答每道题目的概率均为,甲、乙两校对每道题的作答都是相互独立,互不影响的.(1)求甲、乙两校总共正确作答2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两校哪所学校获得第一环节胜利的可能性更大?2.(2021·河北沧州·)在我国,月日的月日数恰好与火警号码相同,而且这一天前后,正值风干物燥、火灾多发之际,全国各地都在紧锣密鼓地开展冬季防火工作,为增加全民的消防安全意识,于年发起,公安部将每年的月日定为全国的“消防日”.为切实提高中学生消防安全知识,增强火灾的应对能力,某市特举办以“消防安全进万家,平安相伴你我他”为主题的知识竞赛,甲、乙同学将代表学校参加.为取得好成绩,二人在消防知识题库中各随机选取题练习,每题答对得分,答错得分,练习结果甲得分,乙得分.若以二人练习中答题正确的频率作为竞赛答题正确的概率,回答下列问题.竞赛第一环节,要求甲乙二人各选两题做答,每题答对得分,答错不得分,求甲乙二人得分和的概率分布列和期望;第二环节中,要求二人自选两道题或四道题做答,要求一半及一半以上正确才能过关,那么甲乙二人怎样选择,各自过关的可能性较大.3.(2021·广东罗湖·深圳第三高中高三月考)某班体育课组织篮球投篮考核,考核分为定点投篮与三步篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先进行哪个项目的考核?并说明理由.4.(2021·河北高三月考)甲、乙、丙三台机床同时生产一种零件,在10天中,甲、乙机床每天生产的次品数如下表所示:第1天第2天第3天第4天第5天第6天第7天第8天第9天第10天甲0102233120乙2411021101(1)若从这10天中随机选取1天,设甲机床这天生产的次品数为X,求X的分布列;(2)已知丙机床这10天生产次品数的平均数为,方差为.以平均数和方差为依据,若要从这三台机床中淘汰一台,你应该怎么选择?这三台机床你认为哪台性能最好?5.(2021·广东揭阳·高三模拟预测)小田开小汽车上班的道路要经过5个红绿灯路口,若小田到达每一个路口是相互独立的,到达每一个路口遇到红灯的概率都为,遇到绿灯的概率都为.(1)若小田从出门到第一个路口和最后一个路口到办公室各需要5分钟,在路口遇到红灯的平均等待时间为1分钟,每两个路口之间的行驶时间为2分钟,求小田从出门到办公室的时间的平均值;(2)小田骑电动车上班的道路只要经过3个红绿灯路口(只有红灯或绿灯),随机到达第一个路口遇到红灯、绿灯的概率都为,一个路口遇到红灯时下一个路口遇到红灯和一个路口遇到绿灯时下一个路口遇到绿灯的概率都为,求小田遇到红灯个数的平均值;(3)若小田骑电动车走道路,从出门到第一个路口和最后一个路口到办公室各需要4分钟,在路口遇到红灯的平均等待时间为1分钟,每两个路口之间的行驶时间为5分钟.从时间来考虑,请问小田上班是开小汽车好,还是骑电动车好?6.(2021·甘肃靖远·高三模拟预测(理))随着移动网络的飞速发展,人们的生活发生了很大变化,其中在购物时利用中的支付宝、微信等APP软件进行扫码支付也日渐流行开来.某商场对近几年顾客使用扫码支付的情况进行了统计,结果如下表:年份20162017201820192020年份代码x12345使用扫码支付的人次y(单位:万人)512161921(1)观察数据发现,使用扫码支付的人次y与年份代码x的关系满足经验关系式:,通过散点图可以发现y与x之间具有相关性.设,利用与x的相关性及表格中的数据求出y与x之间的回归方程,并估计2021年该商场使用扫码支付的人次;(2)为提升销售业绩,该商场近期推出两种付款方案:方案一:使用现金支付,每满200元可参加1次抽奖活动,抽奖方法如下:在抽奖箱里有8个形状、大小完全相同的小球(其中红球有3个,黑球有5个),顾客从抽奖箱中一次性摸出3个球,若摸到3个红球,则打7折;若摸出2个红球则打8折,其他情况不打折.方案二:使用扫码支付,此时系统自动对购物的顾客随机优惠,据统计可知,采用扫码支付时有的概率享受8折优惠,有的概率享受9折优惠,有的概率享受立减10元优惠.若小张在活动期间恰好购买了总价为200元的商品.(i)求小张选择方案一付款时实际付款额X的分布列与数学期望;(ii)试比较小张选择方案一与方案二付款,哪个方案更划算?附:最小二乘法估计公式:经过点的回归直线为相关数据:(其中.7.(2021·河北高三模拟预测)某市甲、乙两个企业都生产某种产品,贸易部门为将该种产品扩大市场份额,推向国内外,创造更高的收益,准备从甲、乙两个企业中选取优质的产品,参加2021年的广交会.现从甲、乙两个企业中各随机抽取5件产品进行质量检测,得到质量指数如下表:甲9089938791乙9189908892规定:质量指数在90以上(包括90)的视为“优质品”,质量指数低于90的视为“合格品”以此样本估计总体,频率作为概率,求解以下问题:(1)若从甲、乙两个企业的优质品中随机取出2件去参加2021年的广交会,求取出的2件优质品恰好都是甲企业的优质品的概率;(2)从乙企业的5件产品中随机取出1件,若为合格品则另放入1件优质品,直到取出的是优质品,求取得合格品次数X的分布列和期望;(3)若两个企业中只能选一个企业参加这次广交会,如果你是该市贸易部门的负责人,从产品质量的稳定性方面考虑,你会选择哪个企业?8.(2021·广州市第一中学高三月考)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.9.(2021·深圳市龙岗区龙城高级中学高三月考)某产品每件成本元,买方收货前要进行质量检测,检测方案规定:每件产品随机检测件,若合格,按一等品付款,每件售价元;若检测到次品,在剩余的产品中再随机检测件,若合格则按一等品付款,每件售价元;若仍然检测到次品,按二等品付款,每件售价元.检测后的合格品需要重新包装,每件需花费元;次品不再出售.若出售后发现一件一等品为次品需换货并支付售价的倍赔款;根据以往统计数据可知,该产品的次品率为(按每件有件次品计算).(1)求该产品检测为一等品的概率;(2)为加大检测力度,质检部门提出新的检测方案:每件产品随机检测件,若全部合格,按一等品付款;若检测到次品,在剩余的产品中再随机检测件,若全部合格按一等品付款;若仍然检测到次品,按二等品付款.根据件产品净利润,试比较原检测方案合理还是新检测方案合理.10.(2021·合肥市第六中学高三模拟预测(理))高一某学生参加学校的数学竞赛选拔考试,本次考试共有道选择题组成.得分规定:做对一道题得分,做错一道题得分,不做得分,分及格.该学生的目标至少得分,且确定该学生前道题的均正确,而剩下的道题每道题做对的概率均为.(1)若该学生道题全都做,求得分的分布列和数学期望;(2)该学生做多少道题时及格的概率最大?11.(2021·沙坪坝·重庆八中高三模拟预测)某商店为了吸引顾客,设计了两种摸球活动奖励方案.先制作一个不透明的盒子,里面放有形状大小完全相同的4个白球和2个红球.方案一:不放回地从盒子中逐个摸球,消费金额每满300元摸一次,最终根据顾客摸到的红球个数发放奖金,如表格所示.红球个数012奖金0元30元75元方案二:可放回地从盒子中逐个摸球,消费金额每满200元摸一次,每摸到一个红球奖励15元.(1)若顾客甲消费的金额为600元,且选择了方案一,求甲获得奖金数为30元的概率;(2)若顾客乙消费的金额为800元,但他可以在摸出第一个球后,根据所摸出球的颜色,再决定执行方案一或方案二继续摸球.请从奖金数期望最大的角度为顾客乙制定第一次摸球后的方案选择,并说明理由.12.(2021·山东潍坊·高三三模)第24届冬季奥运会将于2022年2月4日至2月20日在中国举行,其中冰壶比赛项目是本届奥运会的正式比赛项目之一,1998年中国女子冰壶队第一次参加奥运会冰壶比赛就获得了铜牌.冰壶比赛的场地如图所示,其中左端(投掷线的左侧)有一个发球区,运动员在发球区边沿的投掷线将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心的远近决定胜负.某学校冰壶队举行冰壶投掷测试,规则为:①每人至多投3次,先在点处投第一次,冰壶进入营垒区得3分,未进营垒区不得分;②自第二次投掷开始均在点处投掷冰壶,冰壶进入营垒区得2分,未进营垒区不得分;③测试者累计得分高于3分即通过测试,并立即终止投掷.已知投掷一次冰壶,甲得3分和2分的概率分别为0.1和0.5,乙得3分和2分的概率分别为0.2和0.4,甲,乙每次投掷冰壶的结果互不影响.(1)求甲通过测试的概率;(2)设为本次测试中乙的得分,求的分布列;(3)请根据测试结果来分析,甲,乙两人谁的水平较高?13.(2021·北京市大兴区精华培训学校)某工艺坊要将6件工艺原料加工成工艺品,每天完成一件工艺品,每件原料需先后完成1、2、3三道工序,工序1、2、3分别由工艺师甲、乙、丙完成,三位工艺师同时到岗,完成负责工序即可离岗,等待时按每小时10元进行补贴,记加工原料时工艺师乙、丙获得的总补贴为(单位:元),例如:加工原料1时工艺师乙等待1小时,获得补贴10元,丙等待7小时,获得补贴70元,则,已知完成各工序所需时长(小时)如下表:原料工序原料1原料2原料3原料4原料5原料6工序1112324工序2643141工序3534632由于客户催单,需要将每件原料时长最长的工序时间减少1小时,记此时加工原料时工艺师乙、丙获得的总补贴为(单位:元),例如:.(1)从6件原料中任选一件,求的概率;(2)从6件原料中任选三件,记为满足“”的件数,求的分布列及数学期望;(3)记数据的方差为,数据的方差为,试比较,的大小.(只需写出结果)14.(2021·中区·山东省实验中学高三一模)2020年春天随着疫情的有效控制,高三学生开始返校复课学习.为了减少学生就餐时的聚集排队时间,学校食堂从复课之日起,每天中午都会提供、两种套餐(每人每次只能选择其中一种),经过统计分析发现:学生第一天选择类套餐的概率为、选择类套餐的概率为.而前一天选择了类套餐第二天选择类套餐的概率为、选择套餐的概率为;前一天选择类套餐第二天选择类套餐的概率为、选择类套餐的概率也是,如此往复.记某同学第天选择类套餐的概率为.(1)证明数列是等比数列,并求数列的通项公式;(2)记高三某宿舍的3名同学在复课第二天选择类套餐的人数为,求的分布列并求;(3)为了贯彻五育并举的教育方针,培养学生的劳动意识,一个月后学校组织学生利用课余时间参加志愿者服务活动,其中有20位学生负责为全体同学分发套餐.如果你是组长,如何安排分发、套餐的同学的人数呢,说明理由.15.(2021·山西太原·高三一模(理))某地区为了实现产业的转型发展,利用当地旅游资源丰富多样的特点,决定大力发展旅游产业,一方面对现有旅游资源进行升级改造,另一方面不断提高旅游服务水平.为此该地区旅游部门,对所推出的报团游和自助游项目进行了深入调查,如表是该部门从去年某月到该地区旅游的游客中,随机抽取的100位游客的满意度调查表.满意度老年人中年人青年人报团游自助游报团游自助游报团游自助游满意121184156一般2164412不满意116232(1)由表中的数据分析,老年人、中年人和青年人这三种人群中,哪一类人群更倾向于选择报团游?(2)为了提高服务水平,该旅游部门要从上述样本里满意度为“不满意”的游客中,随机抽取3人征集整改建议,记表示这3人中老年人的人数,求的分布列和期望;(3)若你朋友要到该地区旅游,根据表中的数据,你会建议他选择哪种旅游项目?16.(2021·辽宁朝阳·高三一模)选手甲分别与乙、丙两选手进行象棋比赛,如果甲、乙比赛,那么每局比赛甲获胜的概率为,乙获胜的概率为,如果甲、丙比赛,那么每局比赛甲、丙获胜的概率均为.(1)若采用局胜制,两场比赛甲获胜的概率分别是多少?(2)若采用局胜制,两场比赛甲获胜的概率分别是多少?你能否据此说明赛制与选手实力对比赛结果的影响?17(2021·河南高三月考(文))某果园新采摘了一批苹果,从中随机抽取个作为样本,称出它们的重量(单位:克),将重量按照,,,进行分组,得到频率分布直方图如图所示(同一组中的数据以该组区间的中点值为代表).(1)估计这批苹果的重量的平均数.(2)该果园准备把这批苹果销售给一家超市,据市场行情,有两种销售方案:方案一:所有苹果混在一起,价格为元/千克;方案二:将不同重量的苹果分开,重量不小于克的苹果的价格为元/千克,重量小于克的苹果的价格为元/千克,但果园需支付每个苹果元的分拣费.分别估计并比较两种方案下果园销售个苹果的收入.18.(2021·沙坪坝·重庆南开中学高三月考)某单位规定每位员工每年至少参加两项专业技能测试,测

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论