2024-2025学年专题10.5 带电粒子在电场中的直线运动(含答案)-高二物理举一反三系列(人教版2019必修第三册)_第1页
2024-2025学年专题10.5 带电粒子在电场中的直线运动(含答案)-高二物理举一反三系列(人教版2019必修第三册)_第2页
2024-2025学年专题10.5 带电粒子在电场中的直线运动(含答案)-高二物理举一反三系列(人教版2019必修第三册)_第3页
2024-2025学年专题10.5 带电粒子在电场中的直线运动(含答案)-高二物理举一反三系列(人教版2019必修第三册)_第4页
2024-2025学年专题10.5 带电粒子在电场中的直线运动(含答案)-高二物理举一反三系列(人教版2019必修第三册)_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年专题10.5带电粒子在电场中的直线运动(含答案)-高二物理举一反三系列(人教版2019必修第三册)专题10.5带电粒子在电场中的直线运动【人教版】TOC\o"1-3"\t"正文,1"\h【题型1恒力作用下的直线运动问题】 【题型2变力作用下的直线运动问题】 【题型3交变电场中的直线运动问题】 【题型4联系实际问题】 【题型1恒力作用下的直线运动问题】【例1】(多选)如图所示,一个质量为m、电荷量为q的带正电油滴,在平行于纸面的匀强电场中由静止沿斜向右下方做直线运动,其轨迹与竖直方向的夹角为θ,重力加速度大小为g,不计空气阻力,则下列判断正确的是()A.电场强度的最小值等于eq\f(mg,q)B.电场强度的最大值等于eq\f(mgsinθ,q)C.带电油滴的机械能可能增加D.电场力可能对带电油滴不做功【变式1-1】如图所示,绝缘的斜面处在一个竖直向上的匀强电场中,一带电金属块由静止开始沿斜面滑到底端,已知在金属块下滑的过程中动能增加了0.3J,重力做功1.5J,电势能增加0.5J,则以下判断正确的是()A.金属块带负电荷B.静电力做功0.5JC.金属块克服摩擦力做功0.7JD.金属块的机械能减少1.4J【变式1-2】如图所示,一充电后的平行板电容器的两极板相距l,在正极板附近有一质量为m、电荷量为q1(q1>0)的粒子A;在负极板附近有一质量也为m、电荷量为-q2(q2>0)的粒子B。仅在电场力的作用下两粒子同时从静止开始运动。已知两粒子同时经过一平行于正极板且与其相距eq\f(3,7)l的平面Q,两粒子间相互作用力可忽略,不计重力,则以下说法正确的是()A.电荷量q1与q2的比值为3∶7B.电荷量q1与q2的比值为3∶4C.粒子A、B通过平面Q时的速度之比为9∶16D.粒子A、B通过平面Q时的速度之比为3∶7【变式1-3】如图所示,一带正电的小球在匀强电场中,受到的电场力与小球的重力大小相等,以初速度v0沿ON方向做加速度不为零的匀变速直线运动,ON与水平面的夹角为30°。不计空气阻力,重力加速度为g。则()A.电场力方向可能水平向左B.小球可能做匀加速直线运动C.小球的加速度大小一定小于gD.经过时间eq\f(v0,g),小球的速度方向发生改变【题型2变力作用下的直线运动问题】【例2】如图所示,一平行板电容器水平放置,板间距离为d,上下极板开有一小孔,四个质量均为m、带电荷量均为q的带电小球,其间用长均为eq\f(d,4)的绝缘轻杆相连,处于竖直状态,今使下端小球恰好位于上极板小孔中,且由静止释放,让四球竖直下落.当下端第二个小球到达下极板时,速度恰好为零.重力加速度为g,(仅两极板间存在电场)试求:(1)两极板间的电压;(2)小球运动的最大速度.【变式2-1】如图所示为一个半径为R的均匀带电圆环,取环面中心O为原点,以过O点且垂直于环面的轴线为x轴,P到O点的距离为2R。质量为m、带负电且电荷量为q的小球从轴上P点由静止释放,小球运动到Q点时速度为零,Q点在O点上方R处。下列说法正确的是()A.P点电势比Q点电势低B.P点场强比Q点场强大C.P、Q两点的电势差为eq\f(mgR,q)D.Q点的场强大小等于eq\f(mg,q)【变式2-2】(多选)如图甲所示,某电场中的一条电场线恰好与M、P所在直线重合,以M为坐标原点,向右为正方向建立直线坐标系,P点的坐标xP=5.0cm,此电场线上各点的电场强度大小E随x变化的规律如图乙所示。若一电子仅在电场力作用下自M点运动至P点,其电势能减小45eV,对于此电场,以下说法正确的是()A.该电子做匀变速直线运动B.x轴上各点的电场强度方向都沿x轴负方向C.M点的电势是P点电势的eq\f(1,2)D.图像中的E0的数值为1.2【变式2-3】如图(a),长度L=0.8m的光滑杆左端固定一带正电的点电荷A,其电荷量Q=;一质量m=0.02kg,带电量为q的小球B套在杆上.将杆沿水平方向固定于某非均匀外电场中,以杆左端为原点,沿杆向右为x轴正方向建立坐标系.点电荷A对小球B的作用力随B位置x的变化关系如图(b)中曲线I所示,小球B所受水平方向的合力随B位置x的变化关系如图(b)中曲线II所示,其中曲线II在0.16≤x≤0.20和x≥0.40范围可近似看作直线.求:(静电力常量)(1)小球B所带电量q;(2)非均匀外电场在x=0.3m处沿细杆方向的电场强度大小E;(3)在合电场中,x=0.4m与x=0.6m之间的电势差U;(4)已知小球在x=0.2m处获得v=0.4m/s的初速度时,最远可以运动到x=0.4m.若小球在x=0.16m处受到方向向右,大小为0.04N的恒力作用后,由静止开始运动,为使小球能离开细杆,恒力作用的最小距离s是多少?【题型3交变电场中的直线运动问题】【例3】如图甲所示,两极板间加上如图乙所示的交变电压。开始A板的电势比B板高,此时两板中间原来静止的电子在电场力作用下开始运动。设电子在运动中不与极板发生碰撞,向A板运动时为速度的正方向,则下列图像中能正确反映电子速度随时间变化规律的是(其中C、D两项中的图线按正弦函数规律变化)()【变式3-1】(多选)如图甲所示,A、B两极板间加上如图乙所示的交变电压,A板的电势为0,一质量为m、电荷量大小为q的电子仅在静电力作用下,在t=eq\f(T,4)时刻从A板的小孔处由静止释放进入两极板运动,恰好到达B板,则()A.A、B两板间的距离为eq\r(\f(qU0T2,16m))B.电子在两板间的最大速度为eq\r(\f(qU0,m))C.电子在两板间做匀加速直线运动D.若电子在t=eq\f(T,8)时刻进入两极板,它将时而向B板运动,时而向A板运动,最终到达B板【变式3-2】(多选)匀强电场的电场强度E随时间t变化的图像如图所示。当t=0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是()A.带电粒子将始终向同一个方向运动B.2s末带电粒子回到原出发点C.3s末带电粒子的速度为零D.0~3s内,电场力做的总功为零【变式3-3】(多选)如图甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大。当两板间加上如图乙所示的交变电压后,选项图中反映电子速度v、位移x和加速度a随时间t的变化规律图像,可能正确的是()【题型4联系实际问题】【例4】静电火箭是利用电场加速工作介质形成高速射流而产生推力的.工作过程简化图如图所示,离子源发射的离子经过加速区加速,进入中和区与该区域里面的电子中和,最后形成中性高速射流喷射而产生推力.根据题目信息可知()A.M板电势低于N板电势B.进入中和区的离子速度与离子带电荷量无关C.增大加速区MN极板的距离,可以增大射流速度而获得更大的推力D.增大MN极板间的电压,可以增大射流速度而获得更大的推力【变式4-1】多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子初速度不计,经电压为U的匀强电场加速后射入质量分析器。质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使得进入反射区的离子能够反射回漂移管。离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。设实验所用离子的电荷量均为q,不计离子重力。(1)求质量为m的离子第一次通过漂移管所用的时间T1;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为m0的离子总飞行时间为t0,待测离子的总飞行时间为t1,两种离子在质量分析器中反射相同次数,求待测离子质量m1。【变式4-2】中国科学家2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器.加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用.如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极.质子从K点沿轴线进入加速器并依此向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变.设质子进入漂移管B时速度为8×106m/s,进入漂移管E时速度为1×107m/s,电源频率为1×107Hz,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的.质子的荷质比取1×108C/kg.求:(1)漂移管B的长度;(2)相邻漂移管间的加速电压.【变式4-3】人体的细胞膜模型图如图1所示,细胞膜由磷脂双分子层组成,双分子层之间存在电压(医学上称为膜电位)。现研究某小块均匀的细胞膜,厚度为d,膜内的电场可看作匀强电场,简化模型如图2所示,初速度可视为零的一价正钠离子仅在电场力的作用下,从图中的A点运动到B点。下列说法正确的是()。A.A点电势等于B点电势B.钠离子的电势能增大C.若膜电位不变,当d越大时,钠离子进入细胞内的速度增大D.若膜电位增加,则钠离子进入细胞内的速度增大

专题10.5带电粒子在电场中的直线运动【人教版】TOC\o"1-3"\t"正文,1"\h【题型1恒力作用下的直线运动问题】 【题型2变力作用下的直线运动问题】 【题型3交变电场中的直线运动问题】 【题型4联系实际问题】 【题型1恒力作用下的直线运动问题】【例1】(多选)如图所示,一个质量为m、电荷量为q的带正电油滴,在平行于纸面的匀强电场中由静止沿斜向右下方做直线运动,其轨迹与竖直方向的夹角为θ,重力加速度大小为g,不计空气阻力,则下列判断正确的是()A.电场强度的最小值等于eq\f(mg,q)B.电场强度的最大值等于eq\f(mgsinθ,q)C.带电油滴的机械能可能增加D.电场力可能对带电油滴不做功解析:选CD带电油滴的运动轨迹为直线,在电场中受到重力mg和电场力F,其合力必定沿此直线向下,根据三角形定则作出合力,如图所示。当电场力F与此直线垂直时,电场力F最小,场强最小,则有F=qEmin=mgsinθ,得到Emin=eq\f(mgsinθ,q),由图可知,电场强度无最大值,故A、B错误;当E=eq\f(mgsinθ,q)时,电场力方向与速度方向垂直,电场力不做功,带电油滴的电势能一定不变,这种情况下只有重力做功,带电油滴的机械能不变,故D正确;当E>eq\f(mgsinθ,q)时,当电场力方向与速度方向成锐角时,电场力做正功,带电油滴的机械能增加,故C正确。【变式1-1】如图所示,绝缘的斜面处在一个竖直向上的匀强电场中,一带电金属块由静止开始沿斜面滑到底端,已知在金属块下滑的过程中动能增加了0.3J,重力做功1.5J,电势能增加0.5J,则以下判断正确的是()A.金属块带负电荷B.静电力做功0.5JC.金属块克服摩擦力做功0.7JD.金属块的机械能减少1.4J解析:选C在下滑过程中电势能增加0.5J,故物体需克服电场力做功为0.5J,故金属块带正电荷,故A、B错误;在金属块滑下的过程中动能增加了0.3J,重力做功1.5J,电场力做功-0.5J,根据动能定理得,W总=WG+W电+Wf=ΔEk,解得Wf=-0.7J,故C正确;外力做功为W外=W电+Wf=-1.2J,故金属块机械能减少1.2J,故D错误。【变式1-2】如图所示,一充电后的平行板电容器的两极板相距l,在正极板附近有一质量为m、电荷量为q1(q1>0)的粒子A;在负极板附近有一质量也为m、电荷量为-q2(q2>0)的粒子B。仅在电场力的作用下两粒子同时从静止开始运动。已知两粒子同时经过一平行于正极板且与其相距eq\f(3,7)l的平面Q,两粒子间相互作用力可忽略,不计重力,则以下说法正确的是()A.电荷量q1与q2的比值为3∶7B.电荷量q1与q2的比值为3∶4C.粒子A、B通过平面Q时的速度之比为9∶16D.粒子A、B通过平面Q时的速度之比为3∶7解析:选B设电场强度大小为E,两粒子的运动时间相同,对粒子A有:a1=eq\f(q1E,m),eq\f(3,7)l=eq\f(1,2)·eq\f(q1E,m)·t2,对粒子B有:a2=eq\f(q2E,m),eq\f(4,7)l=eq\f(1,2)·eq\f(q2E,m)·t2,联立解得:eq\f(q1,q2)=eq\f(3,4),A错误,B正确。由动能定理qEx=eq\f(1,2)mv2-0,求得:eq\f(v1,v2)=eq\f(3,4),C、D错误。【变式1-3】如图所示,一带正电的小球在匀强电场中,受到的电场力与小球的重力大小相等,以初速度v0沿ON方向做加速度不为零的匀变速直线运动,ON与水平面的夹角为30°。不计空气阻力,重力加速度为g。则()A.电场力方向可能水平向左B.小球可能做匀加速直线运动C.小球的加速度大小一定小于gD.经过时间eq\f(v0,g),小球的速度方向发生改变解析:选D小球做匀变速直线运动,合力方向一定和速度方向在同一直线上,即在ON直线上,因为mg=qE,所以电场力qE与重力关于ON对称,根据几何关系可知电场力qE与水平方向夹角为30°,受力情况如图所示,合力沿ON向下,大小为mg,所以加速度为g,方向沿ON向下,与速度方向相反,小球做匀减速直线运动,故A、B、C错误;设小球减速到零所用时间为t,则t=eq\f(v0,a)=eq\f(v0,g),故经过时间eq\f(v0,g),小球速度刚好减为零,然后反向加速,即经过时间eq\f(v0,g),小球的速度方向发生改变,故D正确。【题型2变力作用下的直线运动问题】【例2】如图所示,一平行板电容器水平放置,板间距离为d,上下极板开有一小孔,四个质量均为m、带电荷量均为q的带电小球,其间用长均为eq\f(d,4)的绝缘轻杆相连,处于竖直状态,今使下端小球恰好位于上极板小孔中,且由静止释放,让四球竖直下落.当下端第二个小球到达下极板时,速度恰好为零.重力加速度为g,(仅两极板间存在电场)试求:(1)两极板间的电压;(2)小球运动的最大速度.答案(1)eq\f(20mgd,13q)(2)eq\r(\f(11gd,26))解析(1)根据动能定理可得4mg×eq\f(5,4)d-2Uq-eq\f(3,4)Uq-eq\f(1,2)Uq=0解得U=eq\f(20mgd,13q)(2)当两个小球在电场中时,静电力F1=eq\f(U,d)×2q=eq\f(40,13)mg<4mg当三个小球在电场中时,静电力F2=eq\f(U,d)×3q=eq\f(60,13)mg>4mg故当第三个小球刚进入电场时速度最大,根据动能定理可得4mg×eq\f(d,2)-eq\f(1,2)Uq-eq\f(1,4)Uq=eq\f(1,2)×4mv2-0解得v=eq\r(\f(11gd,26)).【变式2-1】如图所示为一个半径为R的均匀带电圆环,取环面中心O为原点,以过O点且垂直于环面的轴线为x轴,P到O点的距离为2R。质量为m、带负电且电荷量为q的小球从轴上P点由静止释放,小球运动到Q点时速度为零,Q点在O点上方R处。下列说法正确的是()A.P点电势比Q点电势低B.P点场强比Q点场强大C.P、Q两点的电势差为eq\f(mgR,q)D.Q点的场强大小等于eq\f(mg,q)解析:选C由题意可知带负电小球由P点到Q点先加速后减速运动,受到沿x轴向上的电场力作用,故电场方向沿x轴向下,沿电场线方向电势逐渐降低,故P点电势比Q点电势高,A错误;开始qEP<mg,在Q点qEQ>mg,故P点场强比Q点场强小,B、D错误;由动能定理可知mgR+UPQ(-q)=0,故P、Q两点的电势差为UPQ=eq\f(mgR,q),C正确。【变式2-2】(多选)如图甲所示,某电场中的一条电场线恰好与M、P所在直线重合,以M为坐标原点,向右为正方向建立直线坐标系,P点的坐标xP=5.0cm,此电场线上各点的电场强度大小E随x变化的规律如图乙所示。若一电子仅在电场力作用下自M点运动至P点,其电势能减小45eV,对于此电场,以下说法正确的是()A.该电子做匀变速直线运动B.x轴上各点的电场强度方向都沿x轴负方向C.M点的电势是P点电势的eq\f(1,2)D.图像中的E0的数值为1.2解析:选BD由题图可知电子从M点运动到P点过程中,电场强度逐渐减小,所以该电场不是匀强电场,即电子受到的电场力不是恒定的,所以该电子不做匀变速直线运动,故A错误;若一电子仅在电场力作用下自M点运动至P点,电势能减小,则电场力做正功,由功能关系可得WMP=EpM-EpP>0,又WMP=-UMPe,所以UMP<0,即φM<φP,而电场线由高电势指向低电势,可知x轴上各点的电场强度方向都沿x轴负方向,故B正确;电势零点未知,所以无法确定两点的电势数值关系,故C错误;由题可知WMP=45eV,E-x图像与横轴围成图形的面积表示对应距离的电势差,可得WMP=eq\f(E0e+\f(E0e,2)×5×10-2m,2)=45eV,解得E0=1200V,即图像中E0的数值为1.2,故D正确。【变式2-3】如图(a),长度L=0.8m的光滑杆左端固定一带正电的点电荷A,其电荷量Q=;一质量m=0.02kg,带电量为q的小球B套在杆上.将杆沿水平方向固定于某非均匀外电场中,以杆左端为原点,沿杆向右为x轴正方向建立坐标系.点电荷A对小球B的作用力随B位置x的变化关系如图(b)中曲线I所示,小球B所受水平方向的合力随B位置x的变化关系如图(b)中曲线II所示,其中曲线II在0.16≤x≤0.20和x≥0.40范围可近似看作直线.求:(静电力常量)(1)小球B所带电量q;(2)非均匀外电场在x=0.3m处沿细杆方向的电场强度大小E;(3)在合电场中,x=0.4m与x=0.6m之间的电势差U;(4)已知小球在x=0.2m处获得v=0.4m/s的初速度时,最远可以运动到x=0.4m.若小球在x=0.16m处受到方向向右,大小为0.04N的恒力作用后,由静止开始运动,为使小球能离开细杆,恒力作用的最小距离s是多少?【答案】(1);(2);(3)800V;(4)0.065m【解析】(1)由图可知,当x=0.3m时,有因此(2)设在x=0.3m处点电荷与小球间作用力为F2,因此电场在x=0.3m处沿细杆方向的电场强度大小为,方向水平向左;(3)根据图像可知在x=0.4m与x=0.6m之间合力做功大小为由公式可得(4)由图可知小球从x=0.16m到x=0.2m处,电场力做功为小球从到处,电场力做功为==由图可知小球从到处,电场力做功为由动能定理可得+++=0解得【题型3交变电场中的直线运动问题】【例3】如图甲所示,两极板间加上如图乙所示的交变电压。开始A板的电势比B板高,此时两板中间原来静止的电子在电场力作用下开始运动。设电子在运动中不与极板发生碰撞,向A板运动时为速度的正方向,则下列图像中能正确反映电子速度随时间变化规律的是(其中C、D两项中的图线按正弦函数规律变化)()[解析]电子在交变电场中所受电场力大小恒定,加速度大小不变,C、D错误;从0时刻开始,电子向A板做匀加速直线运动,eq\f(1,2)T后电场力反向,电子向A板做匀减速直线运动,直到t=T时刻速度变为零。之后重复上述运动,A正确,B错误。[答案]A【变式3-1】(多选)如图甲所示,A、B两极板间加上如图乙所示的交变电压,A板的电势为0,一质量为m、电荷量大小为q的电子仅在静电力作用下,在t=eq\f(T,4)时刻从A板的小孔处由静止释放进入两极板运动,恰好到达B板,则()A.A、B两板间的距离为eq\r(\f(qU0T2,16m))B.电子在两板间的最大速度为eq\r(\f(qU0,m))C.电子在两板间做匀加速直线运动D.若电子在t=eq\f(T,8)时刻进入两极板,它将时而向B板运动,时而向A板运动,最终到达B板答案AB解析电子在t=eq\f(T,4)时刻由静止释放进入两极板运动,先加速后减速,在t=eq\f(3,4)T时刻到达B板,设两板的间距为d,加速度a=eq\f(qU0,md),则有d=2×eq\f(1,2)a(eq\f(T,4))2,解得d=eq\r(\f(qU0T2,16m)),故A正确;由题意可知,经过eq\f(T,4)时间电子速度最大,则最大速度为vm=a·eq\f(T,4)=eq\r(\f(qU0,m)),故B正确;电子在两板间先向右做匀加速直线运动,然后向右做匀减速直线运动,故C错误;若电子在t=eq\f(T,8)时刻进入两极板,在eq\f(T,8)~eq\f(T,2)时间内电子做匀加速直线运动,位移x=eq\f(1,2)·eq\f(qU0,md)·(eq\f(3,8)T)2=eq\f(9,8)d>d,说明电子会一直向B板运动并打在B板上,不会向A板运动,故D错误.【变式3-2】(多选)匀强电场的电场强度E随时间t变化的图像如图所示。当t=0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是()A.带电粒子将始终向同一个方向运动B.2s末带电粒子回到原出发点C.3s末带电粒子的速度为零D.0~3s内,电场力做的总功为零[解析]设第1s内粒子的加速度为a1,第2s内的加速度为a2,由a=eq\f(qE,m)可知,a2=2a1,可见,粒子第1s内向负方向运动,1.5s末粒子的速度为零,然后向正方向运动,至3s末回到原出发点,粒子的速度为0,v-t图像如图所示,由动能定理可知,此过程中电场力做的总功为零,综上所述,可知C、D正确。[答案]CD【变式3-3】(多选)如图甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大。当两板间加上如图乙所示的交变电压后,选项图中反映电子速度v、位移x和加速度a随时间t的变化规律图像,可能正确的是()解析:选AD在平行金属板之间加上题图乙所示的交变电压时,电子在平行金属板间所受的电场力大小始终不变,F=eq\f(U0e,d),由牛顿第二定律F=ma可知,电子的加速度大小始终不变,电子在第一个eq\f(T,4)内向B板做匀加速直线运动,在第二个eq\f(T,4)内向B板做匀减速直线运动,在第三个eq\f(T,4)内反向做匀加速直线运动,在第四个eq\f(T,4)内向A板做匀减速直线运动,所以at图像应如图D所示,vt图像应如图A所示,A、D正确,C错误;又因匀变速直线运动位移x=v0t+eq\f(1,2)at2,所以xt图像应是曲线,B错误。【题型4联系实际问题】【例4】静电火箭是利用电场加速工作介质形成高速射流而产生推力的.工作过程简化图如图所示,离子源发射的离子经过加速区加速,进入中和区与该区域里面的电子中和,最后形成中性高速射流喷射而产生推力.根据题目信息可知()A.M板电势低于N板电势B.进入中和区的离子速度与离子带电荷量无关C.增大加速区MN极板的距离,可以增大射流速度而获得更大的推力D.增大MN极板间的电压,可以增大射流速度而获得更大的推力答案D解析由于加速后的离子在中和区与电子中和,所以被加速的离子带正电,则加速器极板M电势高,A错误;由动能定理知qU=eq\f(1,2)mv2,解得v=eq\r(\f(2qU,m)),所以进入中和区的离子速度与比荷、加速电压有关,与极板距离无关,故D正确,B、C错误.【变式4-1】多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子初速度不计,经电压为U的匀强电场加速后射入质量分析器。质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使得进入反射区的离子能够反射回漂移管。离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。设实验所用离子的电荷量均为q,不计离子重力。(1)求质量为m的离子第一次通过漂移管所用的时间T1;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为m0的离子总飞行时间为t0,待测离子的总飞行时间为t1,两种离子在质量分析器中反射相同次数,求待测离子质量m1。解析:(1)设离子经加速电场加速后的速度大小为v,有qU=eq\f(1,2)mv2 ①离子在漂移管中做匀速直线运动,则T1=eq\f(l,v) ②联立①②式,得T1=eq\r(\f(ml2,2qU))。 ③(2)根据动能定理,有qU-qEx=0 ④得x=eq\f(U,E)。 ⑤(3)离子在加速电场中运动和反射区电场中每次单向运动均为匀变速直线运动,平均速度大小均相等,设其为eq\x\to(v),有eq\x\to(v)=eq\f(v,2) ⑥通过⑤式可知,离子在反射区的电场中运动路程是与离子本身无关的,所以不同离子在电场区运动的总路程相等,设为L1,在无场区的总路程设为L2,根据题目条件可知,离子在无场区速度大小恒为v,设离子的总飞行时间为t总,有t总=eq\f(L1,\x\to(v))+eq\f(L2,v) ⑦联立①⑥⑦式,得t总=(2L1+L2)eq\r(\f(m,2qU)) ⑧可见,离子从A到B的总飞行时间与eq\r(m)成正比。依题意可得eq\f(t1,t0)=eq\r(\f(m1,m0))可得m1=eq\f(t1,t0)2m0。 ⑨答案:(1)eq\r(\f(ml2,2qU))(2)eq\f(U,E)(3)eq\f(t1,t0)2m0【变式4-2】中国科学家2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器.加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用.如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极.质子从K点沿轴线进入加速器并依此向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变.设质子进入漂移管B时速度为8×106m/s,进入漂移管E时速度为1×107m/s,电源频率为1×107Hz,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的.质子的荷质比取1×108C/kg.求:(1)漂移管B的长度;(2)相邻漂移管间的加速电压.【答案】(1)0.4m(2)【解析】(1)设质子进入漂移管B的速度为,电源频率、周期分别为f、T,漂移管B的长度为L,则联立并代入数据得(2)设质子进入漂移管E的速度为,相邻漂移管间的加速电压为U,电场对质子所做的功为W,质子从漂移管B运动到E电场做功W',质子的电荷量为q、质量为m,则联立并代入数据得【变式4-3】人体的细胞膜模型图如图1所示,细胞膜由磷脂双分子层组成,双分子层之间存在电压(医学上称为膜电位)。现研究某小块均匀的细胞膜,厚度为d,膜内的电场可看作匀强电场,简化模型如图2所示,初速度可视为零的一价正钠离子仅在电场力的作用下,从图中的A点运动到B点。下列说法正确的是()。A.A点电势等于B点电势B.钠离子的电势能增大C.若膜电位不变,当d越大时,钠离子进入细胞内的速度增大D.若膜电位增加,则钠离子进入细胞内的速度增大答案D解析初速度可视为零的一价正钠离子仅在电场力的作用下,从图中的A点运动到B点,则电场线从A到B,沿电场线电势降低,所以A点电势大于B点电势,A项错误。钠离子运动中电场力做正功,所以钠离子的电势能减小,B项错误。由动能定理可知qU=12mv2,若膜电位不变时,即电压U不变时,钠离子进入细胞内的速度不变;电压U增加时,速度增大,C项错误,D项正确。专题10.6带电粒子在电场中的曲线运动【人教版】TOC\o"1-3"\t"正文,1"\h【题型1交变电场中的曲线运动问题】 【题型2类平抛问题】 【题型3类斜抛问题】 【题型4变速圆周运动杆模型】 【题型5变速圆周运动绳模型】 【题型6联系实际】 【题型7组合场中的运动问题】 【题型8叠加场中的运动问题】 【题型1交变电场中的曲线运动问题】【例1】如图甲所示,A、B是两块水平放置的足够长的平行金属板,B板接地,A、B两极板间电压随时间的变化情况如图乙所示,C、D两平行金属板竖直放置,中间有两正对小孔O1′和O2,两板间电压为U2。现有一带负电粒子在t=0时刻以一定的初速度沿AB两板间的中轴线O1O1′进入,并能从O1′沿O1′O2进入C、D间。已知粒子的带电荷量为-q,质量为m,(不计粒子重力)求:(1)粒子刚好能到达O2孔时,则该粒子进入A、B间的初速度v0为多大;(2)在(1)的条件下,A、B两板长度的最小值;(3)A、B两板间距的最小值。【变式1-1】如图1所示,水平放置的平行金属板A和B的距离为d,它们的右端安放着垂直于金属板的靶MN,现在A、B板上加上如图2所示的方波形电压,电压的正向值为U0,反向电压值为U02,且每隔T2变向1次。现将质量为m的带正电、电荷量为q的粒子束从AB的中点O沿平行于金属板的方向OO'射入,设粒子能全部打在靶上而且所有粒子在A、B间的飞行时间均为(1)定性分析在t=0时刻从O点进入的粒子,在垂直于金属板的方向上的运动情况。(2)在距靶MN的中心O'点多远的范围内有粒子击中?(3)要使粒子能全部打在靶MN上,电压U0的数值应满足什么条件?(写出U0、m、d,q、T的关系式即可)【变式1-2】图甲是一对长度为L的平行金属板,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直.在t=0时刻,一带电粒子沿板间的中线OO′垂直电场方向射入电场,2t0时刻粒子刚好沿下极板右边缘射出电场.不计粒子重力.则()A.粒子带负电B.粒子在平行板间一直做曲线运动C.粒子射入电场时的速度大小为eq\f(L,2t0)D.若粒子射入电场时的速度减为一半,射出电场时的速度垂直于电场方向【变式1-3】在图甲所示的极板A、B间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T,现有一电子以平行于极板的速度v0从两板中央OO′射入.已知电子的质量为m,电荷量为e,不计电子的重力,问:(1)若电子从t=0时刻射入,在半个周期内恰好能从A板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t=0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能从OO′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大?【题型2类平抛问题】【例2】如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U0,电容器板长和板间距离均为L=10cm,下极板接地,电容器右端到荧光屏的距离也是L=10cm,在电容器两极板间接一交变电压,上极板的电势随时间变化的图像如图乙所示。(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t=0.06s时刻进入电容器的电子打在荧光屏上的何处;(2)荧光屏上有电子打到的区间有多长。【变式2-1】喷墨打印机的结构原理如图所示,其中墨盒可以发出半径为1×10-5m的墨汁微粒。此微粒经过带电室时被带上负电,带电的多少由计算机按字体笔画高低位置输入信号加以控制。带电后的微粒以一定的初速度进入偏转电场,经过偏转电场发生偏转后,打到纸上,显示出字体。无信号输入时,墨汁微粒不带电,沿直线通过偏转电场而注入回流槽流回墨盒。设偏转极板长L1=1.6cm,两板间的距离d=0.50cm,偏转极板的右端到纸的距离L2=2.4cm。若一个墨汁微粒的质量为1.6×10-10kg,所带电荷量为1.25×10-12C,以20m/s的初速度垂直于电场方向进入偏转电场,打到纸上的点距原射入方向的距离是1.0mm(不计空气阻力和墨汁微粒的重力,可以认为偏转电场只局限在平行板电容器内部,忽略边缘电场的不均匀性)()A.墨汁从进入偏转电场到打在纸上,做类平抛运动B.两偏转板间的电压是2.0×103VC.两偏转板间的电压是5.0×102VD.为了使纸上的字体放大10%,可以把偏转电压降低10%【变式2-2】(多选)四个带电粒子的电荷量和质量分别为(+q,m)、(+q,2m)、(+3q,3m)、(-q,m),它们先后以相同的速度从坐标原点沿x轴正方向射入一匀强电场中,电场方向与y轴平行。不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是()【变式2-3】空间存在一方向竖直向下的匀强电场,O、P是电场中的两点。从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B。A不带电,B的电荷量为q(q>0)。A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为eq\f(t,2)。重力加速度为g,求:(1)电场强度的大小;(2)B运动到P点时的动能。【题型3类斜抛问题】【例3】(多选)如图所示,有一匀强电场平行于平面xOy,一个带电粒子仅在电场力作用下从O点运动到A点,粒子在O点时速度沿y轴正方向,经A点时速度沿x轴正方向,且粒子在A点的动能是它在O点时动能的3倍。关于粒子在OA段的运动情况,下列判断正确的是()A.该带电粒子带正电荷B.带电粒子在A点的电势能比在O点的电势能小C.这段时间中间时刻粒子的动能最小D.加速度方向与y轴正方向之间的夹角等于120°【变式3-1】(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小【变式3-2】(多选)在电场方向水平向右的匀强电场中,一带电小球从A点竖直向上抛出,其运动的轨迹如图所示,小球运动的轨迹上A、B两点在同一水平线上,M为轨迹的最高点,小球抛出时的动能为8J,在M点的动能为6J,不计空气阻力,则下列判断正确的是()。A.小球水平位移x1与x2的比值为1∶3B.小球水平位移x1与x2的比值为1∶4C.小球落到B点时的动能为32JD.小球落到B点时的动能为14J【变式3-3】(多选)如图,质量为m、带电荷量为+q的小金属块A以初速度v0从光滑绝缘水平高台上飞出。已知在足够高的高台边缘右面空间中存在水平向左的匀强电场,电场强度大小E=eq\f(3mg,q)。则()A.金属块不一定会与高台边缘相碰B.金属块一定会与高台边缘相碰,相碰前金属块在做匀变速运动C.金属块运动过程中距高台边缘的最大水平距离为eq\f(veq\o\al(2,0),4g)D.金属块运动过程的最小速度为eq\f(\r(10)v0,10)【题型4变速圆周运动杆模型】【例4】如图,两个带等量正电的点电荷,分别固定在绝缘水平桌面上的A、B两点,一绝缘圆形细管水平固定在桌面A、B两点间,且圆形细管圆心O位于A、B连线的中点,细管与A、B连线及中垂线交点分别为C、E、D、F,一个带负电的小球在细管中按顺时针方向做完整的圆周运动,不计一切摩擦。下列说法正确的是()A.小球从C运动到D的过程中,速度先减小后增大B.在两个带正电的点电荷产生的电场中,C点的电势比F点的电势低C.小球在C、E两点的速度大小相等,有相同的电势能D.小球在D、F两点所受的电场力相同【变式4-1】如图所示,环形塑料管半径为R,竖直放置,且管的内径远小于环的半径,ab为该环的水平直径,环的ab及其以下部分有水平向左的匀强电场,电场强度的大小E=mgq,管的内壁光滑。现将一质量为m,电荷量为+q的小球从管中a点由静止释放,则()A.小球到达b点时速度为零,并在adb间往复运动B.小球每周的运动过程中最大速度在圆弧ad之间的某一位置C.小球第一次和第二次经过最高点c时对管壁的压力之比为1∶5D.小球第一次经过最低点d和最高点c时对管壁的压力之比为4∶1【变式4-2】如图所示,在竖直放置的光滑半圆弧绝缘细管的圆心O处放一点电荷,将质量为m,带电量为q的小球从圆弧管的水平直径端点C由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力,则放于圆心处的点电荷在C点产生的场强大小为()A. B. C. D.【变式4-3】如图所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径。一质量为m、电荷量为+q(q>0)的小球套在圆环上,并静止在P点,OP与竖直方向的夹角θ=37°。不计空气阻力,已知重力加速度为g,sin37°=0.6,cos37°=0.8。求:(1)电场强度E的大小;(2)若要使小球从P点出发能做完整的圆周运动,小球初速度的大小应满足的条件。【题型5变速圆周运动绳模型】【例5】如图所示,一光滑绝缘半圆环轨道固定在竖直平面内,与光滑绝缘水平面相切于B点,轨道半径为R。整个空间存在水平向右的匀强电场E,场强大小为eq\f(3mg,4q),一带正电小球质量为m、电荷量为q,从距离B点为eq\f(R,3)处的A点以某一初速度沿AB方向开始运动,经过B点后恰能运动到轨道的最高点C。(重力加速度为g,sin37°=0.6,cos37°=0.8)则:(1)带电小球从A点开始运动时的初速度v0多大?(2)带电小球从轨道最高点C经过一段时间运动到光滑绝缘水平面上D点(图中未标出),B点与D点的水平距离多大?【变式5-1】(多选)如图所示,长为L的细线拴一个带电荷量为+q、质量为m小球,重力加速度为g,球处在竖直向下的匀强电场中,电场强度为E,小球恰好能够在竖直平面内做圆周运动,则()A.小球在最高点的速度大小为eq\r(gL)B.当小球运动到最高点时电势能最小C.小球运动到最低点时,机械能最大D.小球运动到最低点时,动能为eq\f(5,2)(mg+qE)L【变式5-2】(多选)如图,在水平向右的匀强电场中,一个质量为m、电荷量为+q的小球,系在一根长为L的绝缘细线一端,可以在竖直平面内绕O点做圆周运动。AB为圆周的水平直径,CD为竖直直径。已知重力加速度为g,电场强度E=eq\f(mg,q),不计空气阻力,下列说法正确的是()A.若小球能在竖直平面内做完整的圆周运动,则过最高点D的最小速度为eq\r(gL)B.若小球能在竖直平面内做完整的圆周运动,则小球运动到B点时机械能最大C.若小球能在竖直平面内做完整的圆周运动,小球从C到D的过程中机械能不守恒D.若将小球从A点由静止释放,小球能沿圆弧运动到D点且速度为零【变式5-3】如图所示,一半径为R的绝缘圆形轨道竖直放置,圆轨道最低点B点与一条水平轨道相连,轨道是光滑的,轨道所在空间存在水平向右、场强为E的匀强电场,从水平轨道上的A点由静止释放一质量为m带正电的小球,设A、B间的距离为s.已知小球受到的静电力大小等于小球重力的eq\f(3,4)倍,C点为圆形轨道上与圆心O的等高点.(重力加速度为g)(1)若s=2R,求小球运动到C点时对轨道的压力大小;(2)为使小球刚好在圆轨道内完成圆周运动,求s的值.【题型6联系实际问题】【例6】(多选)示波管是电子示波器的心脏,其中的电子枪产生一个聚集很细的电子束,电子束经电场加速到很大的速度,再经过一对偏转板,加在偏转板上的电压使电子束发生偏转,电子束将随偏转板的电压的变化而上下运动。简化示波管的工作原理图如图所示,两组平行带电金属板Ⅰ和Ⅱ,板间距离和板长均为L,金属板组Ⅰ竖直放置,两板间所加电压为U1,金属板组Ⅱ水平放置,两板间所加电压为U2。电子从金属板组Ⅰ竖直板上的A点由静止释放后,经B点沿金属板组Ⅱ的中心线水平进入,最终恰好从金属板组Ⅱ的下板右边缘射出。则下列说法正确的是()。A.电子经过两组金属板的时间之比为2∶1B.电子经过两组金属板的加速度之比为1∶2C.平行带电金属板组Ⅰ和Ⅱ所加电压之比为1∶3D.电子射出两组金属板的末动能之比为1∶3【变式6-1】如图为某静电除尘装置的示意图。A、B为电极和集尘板上某点连线上的两点。不计烟尘微粒与空气的作用力及重力,下列说法正确的是()A.A、B两点的电场强度大小不同,方向相同B.集尘板边缘的电场方向一定与集尘板表面垂直C.向集尘板加速靠近的烟尘微粒带负电,且加速度逐渐增大D.若带电烟尘微粒由静止开始仅受电场力作用,则一定沿电场线到达集尘板【变式6-2】如图所示,一种β射线管由平行金属板A、B和平行于金属板的细管C组成.放射源O在A极板左端,可以向各个方向发射不同速度、质量为m的β粒子(电子).若极板长为L,间距为d,当A、B板加上电压U时,只有某一速度的β粒子能从细管C水平射出,细管C离两板等距.已知元电荷为e,则从放射源O发射出的β粒子的这一速度为()A.eq\r(\f(2eU,m)) B.eq\f(L,d)eq\r(\f(eU,m))C.eq\f(1,d)eq\r(\f(eUd2+L2,m)) D.eq\f(L,d)eq\r(\f(eU,2m))【变式6-3】(多选)电子束熔炼是指高真空下,将高速电子束的动能转换为热能作为热源来进行金属熔炼的一种熔炼方法。如图所示,阴极灯丝被加热后产生初速度为0的电子,在3×104V加速电压的作用下,以极高的速度向阳极运动;穿过阳极后,在金属电极A1、A2间1×103V电压形成的聚焦电场作用下,轰击到物料上,其动能全部转换为热能,使物料不断熔炼。已知某电子在熔炼炉中的轨迹如图中虚线OPO′所示,P是轨迹上的一点,聚焦电场过P点的一条电场线如图中弧线所示,则()A.电极A1的电势高于电极A2的电势B.电子在P点时速度方向与聚焦电场强度方向夹角大于90°C.聚焦电场只改变电子速度的方向,不改变电子速度的大小D.电子轰击到物料上时的动能大于3×104eV【题型7组合场中的运动问题】【例7】(多选)质子和α粒子(氦核)分别从静止开始经同一加速电压U1加速后,垂直于电场方向进入同一偏转电场,偏转电场电压为U2.两种粒子都能从偏转电场射出并打在荧光屏MN上,粒子进入偏转电场时速度方向正对荧光屏中心O点.下列关于两种粒子运动的说法正确的是()A.两种粒子会打在屏MN上的同一点B.两种粒子不会打在屏MN上的同一点,质子离O点较远C.两种粒子离开偏转电场时具有相同的动能D.两种粒子离开偏转电场时具有不同的动能,α粒子的动能较大【变式7-1】喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【变式7-2】如图所示,虚线左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L,电场强度为E2=2E的匀强电场,在虚线PQ右侧相距为L处有一与电场E2平行的屏.现将一电子(电荷量e,质量为m)无初速度放入电场E1中的A点,最后打在右侧的屏上,AO连线与屏垂直,垂足为O,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E2时的速度方向与AO连线夹角的正切值;(3)电子打到屏上的点B到O点的距离.【变式7-3】(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L,板间距离为d,距板右端L处有一竖直屏M.一带电荷量为q、质量为m的质点以初速度v0沿中线射入两板间,最后垂直打在M上,则下列说法中正确的是(已知重力加速度为g)()A.两极板间电压为eq\f(mgd,2q)B.板间电场强度大小为eq\f(2mg,q)C.整个过程中质点的重力势能增加eq\f(mg2L2,v02)D.若仅增大两极板间距,则该质点不可能垂直打在M上【题型8叠加场中的运动问题】【例8】空间存在一方向竖直向下的匀强电场,O、P是电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B.A不带电,B的电荷量为q(q>0).A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为eq\f(t,2).重力加速度为g,求:(1)电场强度的大小;(2)B运动到P点时的动能.【变式8-1】(多选)在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.重力加速度为g.由此可见()A.带电小球所受静电力为3mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等【变式8-2】(多选)如图,一根不可伸长的绝缘细线一端固定于O点,另一端系一带电小球,置于水平向右的匀强电场中,现把细线水平拉直,小球从A点由静止释放,经最低点B后,小球摆到C点时速度为0,则()A.小球在B点时速度最大B.小球从A点到B点的过程中,机械能一直在减少C.小球在B点时细线的拉力最大D.从B点到C点的过程中小球的电势能一直增加【变式8-3】(多选)如图所示,在竖直向上的匀强电场中,有两个质量相等、带异种电荷的小球A、B(均可视为质点)处在同一水平面上.现将两球以相同的水平速度v0向右抛出,最后落到水平地面上,运动轨迹如图所示,两球之间的静电力和空气阻力均不考虑,则()A.A球带正电,B球带负电B.A球比B球先落地C.在下落过程中,A球的电势能减少,B球的电势能增加D.两球从抛出到各自落地的过程中,A球的动能变化量比B球的小

专题10.6带电粒子在电场中的曲线运动【人教版】TOC\o"1-3"\t"正文,1"\h【题型1交变电场中的曲线运动问题】 【题型2类平抛问题】 【题型3类斜抛问题】 【题型4变速圆周运动杆模型】 【题型5变速圆周运动绳模型】 【题型6联系实际】 【题型7组合场中的运动问题】 【题型8叠加场中的运动问题】 【题型1交变电场中的曲线运动问题】【例1】如图甲所示,A、B是两块水平放置的足够长的平行金属板,B板接地,A、B两极板间电压随时间的变化情况如图乙所示,C、D两平行金属板竖直放置,中间有两正对小孔O1′和O2,两板间电压为U2。现有一带负电粒子在t=0时刻以一定的初速度沿AB两板间的中轴线O1O1′进入,并能从O1′沿O1′O2进入C、D间。已知粒子的带电荷量为-q,质量为m,(不计粒子重力)求:(1)粒子刚好能到达O2孔时,则该粒子进入A、B间的初速度v0为多大;(2)在(1)的条件下,A、B两板长度的最小值;(3)A、B两板间距的最小值。【变式1-1】如图1所示,水平放置的平行金属板A和B的距离为d,它们的右端安放着垂直于金属板的靶MN,现在A、B板上加上如图2所示的方波形电压,电压的正向值为U0,反向电压值为U02,且每隔T2变向1次。现将质量为m的带正电、电荷量为q的粒子束从AB的中点O沿平行于金属板的方向OO'射入,设粒子能全部打在靶上而且所有粒子在A、B间的飞行时间均为(1)定性分析在t=0时刻从O点进入的粒子,在垂直于金属板的方向上的运动情况。(2)在距靶MN的中心O'点多远的范围内有粒子击中?(3)要使粒子能全部打在靶MN上,电压U0的数值应满足什么条件?(写出U0、m、d,q、T的关系式即可)【变式1-2】图甲是一对长度为L的平行金属板,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直.在t=0时刻,一带电粒子沿板间的中线OO′垂直电场方向射入电场,2t0时刻粒子刚好沿下极板右边缘射出电场.不计粒子重力.则()A.粒子带负电B.粒子在平行板间一直做曲线运动C.粒子射入电场时的速度大小为eq\f(L,2t0)D.若粒子射入电场时的速度减为一半,射出电场时的速度垂直于电场方向【变式1-3】在图甲所示的极板A、B间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T,现有一电子以平行于极板的速度v0从两板中央OO′射入.已知电子的质量为m,电荷量为e,不计电子的重力,问:(1)若电子从t=0时刻射入,在半个周期内恰好能从A板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t=0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能从OO′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大?【题型2类平抛问题】【例2】如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U0,电容器板长和板间距离均为L=10cm,下极板接地,电容器右端到荧光屏的距离也是L=10cm,在电容器两极板间接一交变电压,上极板的电势随时间变化的图像如图乙所示。(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t=0.06s时刻进入电容器的电子打在荧光屏上的何处;(2)荧光屏上有电子打到的区间有多长。【变式2-1】喷墨打印机的结构原理如图所示,其中墨盒可以发出半径为1×10-5m的墨汁微粒。此微粒经过带电室时被带上负电,带电的多少由计算机按字体笔画高低位置输入信号加以控制。带电后的微粒以一定的初速度进入偏转电场,经过偏转电场发生偏转后,打到纸上,显示出字体。无信号输入时,墨汁微粒不带电,沿直线通过偏转电场而注入回流槽流回墨盒。设偏转极板长L1=1.6cm,两板间的距离d=0.50cm,偏转极板的右端到纸的距离L2=2.4cm。若一个墨汁微粒的质量为1.6×10-10kg,所带电荷量为1.25×10-12C,以20m/s的初速度垂直于电场方向进入偏转电场,打到纸上的点距原射入方向的距离是1.0mm(不计空气阻力和墨汁微粒的重力,可以认为偏转电场只局限在平行板电容器内部,忽略边缘电场的不均匀性)()A.墨汁从进入偏转电场到打在纸上,做类平抛运动B.两偏转板间的电压是2.0×103VC.两偏转板间的电压是5.0×102VD.为了使纸上的字体放大10%,可以把偏转电压降低10%【变式2-2】(多选)四个带电粒子的电荷量和质量分别为(+q,m)、(+q,2m)、(+3q,3m)、(-q,m),它们先后以相同的速度从坐标原点沿x轴正方向射入一匀强电场中,电场方向与y轴平行。不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是()【变式2-3】空间存在一方向竖直向下的匀强电场,O、P是电场中的两点。从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B。A不带电,B的电荷量为q(q>0)。A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为eq\f(t,2)。重力加速度为g,求:(1)电场强度的大小;(2)B运动到P点时的动能。【题型3类斜抛问题】【例3】(多选)如图所示,有一匀强电场平行于平面xOy,一个带电粒子仅在电场力作用下从O点运动到A点,粒子在O点时速度沿y轴正方向,经A点时速度沿x轴正方向,且粒子在A点的动能是它在O点时动能的3倍。关于粒子在OA段的运动情况,下列判断正确的是()A.该带电粒子带正电荷B.带电粒子在A点的电势能比在O点的电势能小C.这段时间中间时刻粒子的动能最小D.加速度方向与y轴正方向之间的夹角等于120°【变式3-1】(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小【变式3-2】(多选)在电场方向水平向右的匀强电场中,一带电小球从A点竖直向上抛出,其运动的轨迹如图所示,小球运动的轨迹上A、B两点在同一水平线上,M为轨迹的最高点,小球抛出时的动能为8J,在M点的动能为6J,不计空气阻力,则下列判断正确的是()。A.小球水平位移x1与x2的比值为1∶3B.小球水平位移x1与x2的比值为1∶4C.小球落到B点时的动能为32JD.小球落到B点时的动能为14J【变式3-3】(多选)如图,质量为m、带电荷量为+q的小金属块A以初速度v0从光滑绝缘水平高台上飞出。已知在足够高的高台边缘右面空间中存在水平向左的匀强电场,电场强度大小E=eq\f(3mg,q)。则()A.金属块不一定会与高台边缘相碰B.金属块一定会与高台边缘相碰,相碰前金属块在做匀变速运动C.金属块运动过程中距高台边缘的最大水平距离为eq\f(veq\o\al(2,0),4g)D.金属块运动过程的最小速度为eq\f(\r(10)v0,10)【题型4变速圆周运动杆模型】【例4】如图,两个带等量正电的点电荷,分别固定在绝缘水平桌面上的A、B两点,一绝缘圆形细管水平固定在桌面A、B两点间,且圆形细管圆心O位于A、B连线的中点,细管与A、B连线及中垂线交点分别为C、E、D、F,一个带负电的小球在细管中按顺时针方向做完整的圆周运动,不计一切摩擦。下列说法正确的是()A.小球从C运动到D的过程中,速度先减小后增大B.在两个带正电的点电荷产生的电场中,C点的电势比F点的电势低C.小球在C、E两点的速度大小相等,有相同的电势能D.小球在D、F两点所受的电场力相同【变式4-1】如图所示,环形塑料管半径为R,竖直放置,且管的内径远小于环的半径,ab为该环的水平直径,环的ab及其以下部分有水平向左的匀强电场,电场强度的大小E=mgq,管的内壁光滑。现将一质量为m,电荷量为+q的小球从管中a点由静止释放,则()A.小球到达b点时速度为零,并在adb间往复运动B.小球每周的运动过程中最大速度在圆弧ad之间的某一位置C.小球第一次和第二次经过最高点c时对管壁的压力之比为1∶5D.小球第一次经过最低点d和最高点c时对管壁的压力之比为4∶1【变式4-2】如图所示,在竖直放置的光滑半圆弧绝缘细管的圆心O处放一点电荷,将质量为m,带电量为q的小球从圆弧管的水平直径端点C由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力,则放于圆心处的点电荷在C点产生的场强大小为()A. B. C. D.【变式4-3】如图所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径。一质量为m、电荷量为+q(q>0)的小球套在圆环上,并静止在P点,OP与竖直方向的夹角θ=37°。不计空气阻力,已知重力加速度为g,sin37°=0.6,cos37°=0.8。求:(1)电场强度E的大小;(2)若要使小球从P点出发能做完整的圆周运动,小球初速度的大小应满足的条件。【题型5变速圆周运动绳模型】【例5】如图所示,一光滑绝缘半圆环轨道固定在竖直平面内,与光滑绝缘水平面相切于B点,轨道半径为R。整个空间存在水平向右的匀强电场E,场强大小为eq\f(3mg,4q),一带正电小球质量为m、电荷量为q,从距离B点为eq\f(R,3)处的A点以某一初速度沿AB方向开始运动,经过B点后恰能运动到轨道的最高点C。(重力加速度为g,sin37°=0.6,cos37°=0.8)则:(1)带电小球从A点开始运动时的初速度v0多大?(2)带电小球从轨道最高点C经过一段时间运动到光滑绝缘水平面上D点(图中未标出),B点与D点的水平距离多大?【变式5-1】(多选)如图所示,长为L的细线拴一个带电荷量为+q、质量为m小球,重力加速度为g,球处在竖直向下的匀强电场中,电场强度为E,小球恰好能够在竖直平面内做圆周运动,则()A.小球在最高点的速度大小为eq\r(gL)B.当小球运动到最高点时电势能最小C.小球运动到最低点时,机械能最大D.小球运动到最低点时,动能为eq\f(5,2)(mg+qE)L【变式5-2】(多选)如图,在水平向右的匀强电场中,一个质量为m、电荷量为+q的小球,系在一根长为L的绝缘细线一端,可以在竖直平面内绕O点做圆周运动。AB为圆周的水平直径,CD为竖直直径。已知重力加速度为g,电场强度E=eq\f(mg,q),不计空气阻力,下列说法正确的是()A.若小球能在竖直平面内做完整的圆周运动,则过最高点D的最小速度为eq\r(gL)B.若小球能在竖直平面内做完整的圆周运动,则小球运动到B点时机械能最大C.若小球能在竖直平面内做完整的圆周运动,小球从C到D的过程中机械能不守恒D.若将小球从A点由静止释放,小球能沿圆弧运动到D点且速度为零【变式5-3】如图所示,一半径为R的绝缘圆形轨道竖直放置,圆轨道最低点B点与一条水平轨道相连,轨道是光滑的,轨道所在空间存在水平向右、场强为E的匀强电场,从水平轨道上的A点由静止释放一质量为m带正电的小球,设A、B间的距离为s.已知小球受到的静电力大小等于小球重力的eq\f(3,4)倍,C点为圆形轨道上与圆心O的等高点.(重力加速度为g)(1)若s=2R,求小球运动到C点时对轨道的压力大小;(2)为使小球刚好在圆轨道内完成圆周运动,求s的值.【题型6联系实际问题】【例6】(多选)示波管是电子示波器的心脏,其中的电子枪产生一个聚集很细的电子束,电子束经电场加速到很大的速度,再经过一对偏转板,加在偏转板上的电压使电子束发生偏转,电子束将随偏转板的电压的变化而上下运动。简化示波管的工作原理图如图所示,两组平行带电金属板Ⅰ和Ⅱ,板间距离和板长均为L,金属板组Ⅰ竖直放置,两板间所加电压为U1,金属板组Ⅱ水平放置,两板间所加电压为U2。电子从金属板组Ⅰ竖直板上的A点由静止释放后,经B点沿金属板组Ⅱ的中心线水平进入,最终恰好从金属板组Ⅱ的下板右边缘射出。则下列说法正确的是()。A.电子经过两组金属板的时间之比为2∶1B.电子经过两组金属板的加速度之比为1∶2C.平行带电金属板组Ⅰ和Ⅱ所加电压之比为1∶3D.电子射出两组金属板的末动能之比为1∶3【变式6-1】如图为某静电除尘装置的示意图。A、B为电极和集尘板上某点连线上的两点。不计烟尘微粒与空气的作用力及重力,下列说法正确的是()A.A、B两点的电场强度大小不同,方向相同B.集尘板边缘的电场方向一定与集尘板表面垂直C.向集尘板加速靠近的烟尘微粒带负电,且加速度逐渐增大D.若带电烟尘微粒由静止开始仅受电场力作用,则一定沿电场线到达集尘板【变式6-2】如图所示,一种β射线管由平行金属板A、B和平行于金属板的细管C组成.放射源O在A极板左端,可以向各个方向发射不同速度、质量为m的β粒子(电子).若极板长为L,间距为d,当A、B板加上电压U时,只有某一速度的β粒子能从细管C水平射出,细管C离两板等距.已知元电荷为e,则从放射源O发射出的β粒子的这一速度为()A.eq\r(\f(2eU,m)) B.eq\f(L,d)eq\r(\f(eU,m))C.eq\f(1,d)eq\r(\f(eUd2+L2,m)) D.eq\f(L,d)eq\r(\f(eU,2m))【变式6-3】(多选)电子束熔炼是指高真空下,将高速电子束的动能转换为热能作为热源来进行金属熔炼的一种熔炼方法。如图所示,阴极灯丝被加热后产生初速度为0的电子,在3×104V加速电压的作用下,以极高的速度向阳极运动;穿过阳极后,在金属电极A1、A2间1×103V电压形成的聚焦电场作用下,轰击到物料上,其动能全部转换为热能,使物料不断熔炼。已知某电子在熔炼炉中的轨迹如图中虚线OPO′所示,P是轨迹上的一点,聚焦电场过P点的一条电场线如图中弧线所示,则()A.电极A1的电势高于电极A2的电势B.电子在P点时速度方向与聚焦电场强度方向夹角大于90°C.聚焦电场只改变电子速度的方向,不改变电子速度的大小D.电子轰击到物料上时的动能大于3×104eV【题型7组合场中的运动问题】【例7】(多选)质子和α粒子(氦核)分别从静止开始经同一加速电压U1加速后,垂直于电场方向进入同一偏转电场,偏转电场电压为U2.两种粒子都能从偏转电场射出并打在荧光屏MN上,粒子进入偏转电场时速度方向正对荧光屏中心O点.下列关于两种粒子运动的说法正确的是()A.两种粒子会打在屏MN上的同一点B.两种粒子不会打在屏MN上的同一点,质子离O点较远C.两种粒子离开偏转电场时具有相同的动能D.两种粒子离开偏转电场时具有不同的动能,α粒子的动能较大【变式7-1】喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【变式7-2】如图所示,虚线左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L,电场强度为E2=2E的匀强电场,在虚线PQ右侧相距为L处有一与电场E2平行的屏.现将一电子(电荷量e,质量为m)无初速度放入电场E1中的A点,最后打在右侧的屏上,AO连线与屏垂直,垂足为O,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E2时的速度方向与AO连线夹角的正切值;(3)电子打到屏上的点B到O点的距离.【变式7-3】(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L,板间距离为d,距板右端L处有一竖直屏M.一带电荷量为q、质量为m的质点以初速度v0沿中线射入两板间,最后垂直打在M上,则下列说法中正确的是(已知重力加速度为g)()A.两极板间电压为eq\f(mgd,2q)B.板间电场强度大小为eq\f(2mg,q)C.整个过程中质点的重力势能增加eq\f(mg2L2,v02)D.若仅增大两极板间距,则该质点不可能垂直打在M上【题型8叠加场中的运动问题】【例8】空间存在一方向竖直向下的匀强电场,O、P是电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B.A不带电,B的电荷量为q(q>0).A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为eq\f(t,2).重力加速度为g,求:(1)电场强度的大小;(2)B运动到P点时的动能.【变式8-1】(多选)在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.重力加速度为g.由此可见()A.带电小球所受静电力为3mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等【变式8-2】(多选)如图,一根不可伸长的绝缘细线一端固定于O点,另一端系一带电小球,置于水平向右的匀强电场中,现把细线水平拉直,小球从A点由静止释放,经最低点B后,小球摆到C点时速度为0,则()A.小球在B点时速度最大B.小球从A点到B点的过程中,机械能一直在减少C.小球在B点时细线的拉力最大D.从B点到C点的过程中小球的电势能一直增加【变式8-3】(多选)如图所示,在竖直向上的匀强电场中,有两个质量相等、带异种电荷的小球A、B(均可视为质点)处在同一水平面上.现将两球以相同的水平速度v0向右抛出,最后落到水平地面上,运动轨迹如图所示,两球之间的静电力和空气阻力均不考虑,则()A.A球带正电,B球带负电B.A球比B球先落地C.在下落过程中,A球的电势能减少,B球的电势能增加D.两球从抛出到各自落地的过程中,A球的动能变化量比B球的小

专题10.6带电粒子在电场中的曲线运动【人教版】TOC\o"1-3"\t"正文,1"\h【题型1交变电场中的曲线运动问题】 【题型2类平抛问题】 【题型3类斜抛问题】 【题型4变速圆周运动杆模型】 【题型5变速圆周运动绳模型】 【题型6联系实际】 【题型7组合场中的运动问题】 【题型8叠加场中的运动问题】 【题型1交变电场中的曲线运动问题】【例1】如图甲所示,A、B是两块水平放置的足够长的平行金属板,B板接地,A、B两极板间电压随时间的变化情况如图乙所示,C、D两平行金属板竖直放置,中间有两正对小孔O1′和O2,两板间电压为U2。现有一带负电粒子在t=0时刻以一定的初速度沿AB两板间的中轴线O1O1′进入,并能从O1′沿O1′O2进入C、D间。已知粒子的带电荷量为-q,质量为m,(不计粒子重力)求:(1)粒子刚好能到达O2孔时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论