版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N3.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm4.用一个平面去截一个圆锥,截面的形状不可能是()A.圆 B.矩形 C.椭圆 D.三角形5.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其左视图是(
)A. B. C. D.6.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.7.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A. B. C. D.8.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.1009.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.10.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.21二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(3,4),则点F的坐标是_____.12.如图,是锐角的外接圆,是的切线,切点为,,连结交于,的平分线交于,连结.下列结论:①平分;②连接,点为的外心;③;④若点,分别是和上的动点,则的最小值是.其中一定正确的是__________(把你认为正确结论的序号都填上).13.一元二次方程的解是__.14.如图,一次函数的图象交x轴于点B,交y轴于点A,交反比例函数的图象于点,若,且的面积为2,则k的值为________15.一次函数与反比例函数()的图象如图所示,当时,自变量的取值范围是__________.16.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.17.如图,一辆小车沿着坡度为的斜坡从点A向上行驶了50米到点B处,则此时该小车离水平面的垂直高度为_____________.18.已知点,在函数的图象上,则的大小关系是________三、解答题(共66分)19.(10分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元.试销后发现每袋的销售价(元)与日销售量(袋)之间的关系如下表:(元)152030…(袋)252010…若日销售量是销售价的一次函数,试求:(1)日销售量(袋)与销售价(元)的函数关系式.(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?20.(6分)如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.21.(6分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().22.(8分)解方程:x2-7x-18=0.23.(8分)如图,在平面直角坐标系中,抛物线与轴交于两点,点.(1)当时,求抛物线的顶点坐标及线段的长度;(2)若点关于点的对称点恰好也落在抛物线上,求的值.24.(8分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.25.(10分)如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点(1)若,求直线的函数表达式(2)若点将线段分成的两部分,求点的坐标(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标26.(10分)若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…-2-1012…y…0-2-204…(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.2、A【解析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.3、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.4、B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A可能;截面不可能是矩形,故B符合题意;斜截且与底面不相交的截面是椭圆,故C可能;过圆锥的顶点的截面是三角形,故D可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5、B【解析】根据左视图的定义“在侧面内,从左往右观察物体得到的视图”判断即可.【详解】根据左视图的定义,从左往右观察,两个正方体得到的视图是一个正方形,圆锥得到的视图是一个三角形,由此只有B符合故选:B.【点睛】本题考查了三视图中的左视图的定义,熟记定义是解题关键.另外,主视图和俯视图的定义也是常考点.6、A【分析】画树状图(用、、分别表示“图书馆、博物馆、科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】画树状图为:(用分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率.故选A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.7、B【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】圆锥的侧面积=2π×3×5÷2=15π.故选:B.【点睛】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.8、C【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000963,这个数据用科学记数法可表示为9.63×.
故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、A【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
则△ABC的面积是:×AD×BC=×3×(3+4)=.
故选A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.二、填空题(每小题3分,共24分)11、(6,).【分析】过点D作DM⊥OB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DM⊥OB,垂足为M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四边形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的对角线交点,∴A(4,2),代入y=,得:k=8,∴反比例函数的关系式为:y=,设直线BC的关系式为y=kx+b,将B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直线BC的关系式为y=x﹣,将反比例函数与直线BC联立方程组得:,解得:,(舍去),∴F(6,),故答案为:(6,).【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.12、【分析】如图1,连接,通过切线的性质证,进而由,即可由垂径定理得到F是的中点,根据圆周角定理可得,可得平分;由三角形的外角性质和同弧所对的圆周角相等可得,可得,可得点为得外心;如图,过点C作交的延长线与点通过证明,可得;如图,作点关于的对称点,当点在线段上,且时,.【详解】如图,连接,∵是的切线,∴,∵∴,且为半径∴垂直平分∴∴∴平分,故正确点的外心,故正确;如图,过点C作交的延长线与点,故正确;如图,作点关于的对称点,点与点关于对称,当点在线段上,且时,,且∴的最小值为;故正确.故答案为:.【点睛】本题是相似综合题,考查了圆的相关知识,相似三角形的判定和性质,轴对称的性质,灵活运用这些性质进行推理是本题的关键.13、x1=1,x2=﹣1.【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±1,即x1=1,x2=﹣1,故答案为x1=1,x2=﹣1.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.14、【解析】过点C作CD⊥x轴于点D,根据AAS可证明△AOB≌△CDB,从而证得S△AOC=S△OCD,最后再利用k的几何意义即可得到答案.【详解】解:过点C作CD⊥x轴于点D,如图所示,∵在△AOB与△CDB中,,∴△AOB≌△CDB(AAS),∴S△AOB=S△CDB,∴S△AOC=S△OCD,∵S△AOC=2,∴S△OCD=2,∴,∴k=±4,又∵反比例函数图象在第一象限,k>0,∴k=4.【点睛】本题考查全等三角形的判定与性质,反比例函数中比例系数k的几何意义,熟练掌握判定定理及k的几何意义是解题的关键.15、或【分析】即直线位于双曲线下方部分,根据图象即可得到答案.【详解】解:即直线位于双曲线下方部分,根据图象可知此时或.【点睛】本题考查了一次函数和反比例函数的图象和性质,用图解法解不等式.16、【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=.故答案是:.【点睛】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.17、2【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】设此时该小车离水平面的垂直高度为x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=2.即此时该小车离水平面的垂直高度为2米.故答案为:2.【点睛】考查了解直角三角形的应用−坡度坡角问题,此题的关键是熟悉且会灵活应用公式:tan(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.18、【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A(3,y1),B(5,y2)在函数的图象上,∴,,∴y1>y2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.三、解答题(共66分)19、(1);(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=−x+40(2)设利润为元,得∵∴当时,取得最大值,最大值为225故要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.20、(1)AC=8cm;AD=cm;(2)PC与圆⊙O相切,理由见解析【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;
(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【详解】(1)连结BD,如图1所示,
∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:
∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点睛】本题考查了切线的性质和判定,切线长定理,圆周角定理,是圆的综合题,综合性比较强,难度适中,熟练掌握直线与圆的位置关系的判定方法是解题的关键.21、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解析】由菱形的判定及其性质求解可得.【详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)【点睛】此题考查菱形的判定,掌握判定定理是解题关键.22、【分析】利用因式分解法求解即可.【详解】因式分解,得于是得或故原方程的解为:.【点睛】本题考查了一元二次方程的解法,其主要解法包括:直接开方法、配方法、公式法、因式分解法(十字相乘法)等,熟记各解法是解题关键.23、(1)顶点坐标为(3,9),OA=6;(2)m=2【解析】(1)把m代入抛物线,根据二次函数的图像与性质即可求出顶点,与x轴的交点,即可求解;(2)先用含m的式子表示A点坐标,再根据对称性得到A’的坐标,再代入抛物线即可求出m的值.【详解】解:(1)当y=0时,,即O(0,0),A(6,0)∴OA=6把x=3代入y=-32+69∴顶点坐标为(3,9)(2)当y=0时,,即A(m,0)∵点A关于点B的对称点A′∴A′(-m,-8)把A′(-m,-8)代入得m1=2,m2=-2(舍去)∴m=2.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知坐标的对称性.24、【分析】根据题意画出图形,结合锐角三角函数的定义选择合适的函数即可。【详解】∵∠B=60°,a=2【点睛】本题考查解直角三角形,根据已知条件选择合适的三角函数是解题的关键。25、(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024新媒体内容版权授权与保护合作协议2篇
- 2024年标准土地共同开发合同版
- 2023-2024学年高中信息技术选择性必修1(浙教版2019)数据与数据结构-说课稿-5.4-数据查找
- 2024提高教育资源共享传播能力采购合同3篇
- 2024数码相机租赁与体育赛事转播合同范本3篇
- 高血压健康宣教
- 专业车辆租赁协议:2024经典版式版
- 职业学院学生外出活动安全承诺书
- 2024志愿服务协议书
- 个人最高额抵押融资协议样本(2024版)版B版
- 新编建筑施工扣件式钢管脚手架安全技术规范
- 三年级下册小猿口算题1000道
- 《古兰》中文译文版
- 井下机电安装安全教育培训试题及答案
- GB/T 4744-2013纺织品防水性能的检测和评价静水压法
- GB/T 24267-2009建筑用阻燃密封胶
- 劳动仲裁追加申请申请书(标准版)
- 决策的艺术课件
- 了不起的狐狸爸爸-全文打印
- 2022年反射疗法师(三级)理论考试题库-下部分(500题)
- 铝型材工艺及表面处理课件
评论
0/150
提交评论