广东省揭阳市揭东区2024年下学期高三数学试题5月第二次月考考试试卷_第1页
广东省揭阳市揭东区2024年下学期高三数学试题5月第二次月考考试试卷_第2页
广东省揭阳市揭东区2024年下学期高三数学试题5月第二次月考考试试卷_第3页
广东省揭阳市揭东区2024年下学期高三数学试题5月第二次月考考试试卷_第4页
广东省揭阳市揭东区2024年下学期高三数学试题5月第二次月考考试试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省揭阳市揭东区2024年下学期高三数学试题5月第二次月考考试试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.2.函数y=sin2x的图象可能是A. B.C. D.3.设是定义域为的偶函数,且在单调递增,,则()A. B.C. D.4.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.5.设全集为R,集合,,则A. B. C. D.6.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.7.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.8.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或49.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行10.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.611.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是112.已知复数满足,则的共轭复数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.14.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.15.命题“对任意,”的否定是.16.已知数列的前项和为,且满足,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.18.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.19.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.20.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.21.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.2、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.3、C【解析】

根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.4、D【解析】

先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.5、B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.6、C【解析】

如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.7、B【解析】

根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.8、C【解析】

对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.9、B【解析】

根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.10、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).11、A【解析】

根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.12、B【解析】

根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以.故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.14、【解析】

设:,:,利用点到直线的距离,列出式子,求出的值即可.【详解】解:由圆,可知圆心,半径为.设直线:,则:,圆心到直线的距离为,,.圆心到直线的距离为半径,即,并根据垂径定理的应用,可列式得到,解得.故答案为:.【点睛】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.15、存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.考点:命题的否定.16、【解析】

对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.【详解】解:,可得时,,时,,又,两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得.【点睛】本小题主要考查已知求,考查等比数列前项和公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)k1+k2为定值0,见解析【解析】

(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.18、(Ⅰ)3;(Ⅱ).【解析】

(Ⅰ)函数,利用和差公式和倍角公式,化简即可求得;(Ⅱ)由(Ⅰ)知函数,根据点是函数图象的一个对称中心,代入可得,利用余弦定理、基本不等式的性质即可得出.【详解】(Ⅰ)的最大值为最小正周期为(Ⅱ)由题意及(Ⅰ)知,,故故的面积的最大值为.【点睛】本题考查三角函数的和差公式、倍角公式、三角函数的图象与性质、余弦定理、基本不等式的性质,考查理解辨析能力与运算求解能力,属于中档基础题.19、(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.∵曲线与直线相交于不同的两点,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角,是参数),这样的参数方程中的参数有明确的几何意义,它表示之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.20、(1),(2)【解析】

(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.21、(1)证明见解析(2)【解析】

(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论