版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学下册第8章整式乘法与因式分解必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、若的运算结果中不含项和常数项,则m,n的值分别为()A., B.,C., D.,2、“杨辉三角”(如图),也叫“贾宪三角”,是中国古代数学无比睿智的成就之一,被后世广泛运用.用“杨辉三角”可以解释(=,,,,5,6)的展开式的系数规律.例如,在“杨辉三角”中第3行的3个数,,,恰好对应着展开式中各项的系数;第4行的4个数,,,,恰好对应着展开式中各项的系数,等等.当n是大于6的自然数时,上述规律仍然成立,那么展开式中的系数是()A. B. C. D.3、下列各式运算正确的是()A. B.C. D.4、如果,那么的值为()A. B. C. D.5、若,则的值为()A. B. C. D.6、下列计算正确的是()A. B.C. D.7、对于两个有理数、,定义一种新的运算:,若,则的值为()A. B. C. D.8、下列运算正确的是()A.x2+x2=x4 B.2(a﹣1)=2a﹣1C.3a2•2a3=6a6 D.(x2y)3=x6y39、下列各式中,不能因式分解的是()A.4x2﹣4x+1 B.x2﹣4y2C.x3﹣2x2y+xy2 D.x2+y2+x2y210、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递.微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为()A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、计算:________.2、计算:_______.3、计算:________.4、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)5、________.三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2)(3);(4)先化简,再求值:,其中.2、阅读题在现今“互联网+”的时代,密码与我们的生活已经密切相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式x3﹣x2因式分解的结果为x2(x﹣1),当x=5时,x2=25,x﹣1=04,此时可以得到数字密码2504或0425;如多项式x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=10时,x﹣1=09,x+1=11,x+2=12,此时可以得到数字密码091112.(1)根据上述方法,当x=12,y=5时,求多项式x3﹣xy2分解因式后可以形成哪些数字密码;(写出三个)(2)若一个直角三角形的周长12,斜边长为5,其中两条直角边分别为x,y,求出一个由多项式x3y+xy3分解因式后得到密码;(只需一个即可)(3)若多项式x2+(m﹣3n)x﹣6n因式分解后,利用本题的方法,当x=25时可以得到一个密码2821,求m、n的值.3、(1)请写出三个代数式(a+b)2、(a﹣b)2和ab之间数量关系式.(2)应用上一题的关系式,计算:xy=﹣3,x﹣y=4,试求x+y的值.(3)如图,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.4、小明在进行两个多项式的乘法运算时,不小心把乘错抄成除以,结果得到,如果小明没有错抄题目,并且计算依然正确,那么得到的结果应该是什么?5、计算:(1)a4•3a2+(﹣2a2)3+5a6;(2)(a+b)(a2﹣ab+b2);(3)(12ab2﹣9a2b)÷3ab;(4)(x﹣2y+3)(x+2y﹣3).-参考答案-一、单选题1、D【分析】直接利用多项式乘多项式将原式变形,进而得出m,n的值;【详解】解:==∵结果中不含项和常数项∴3-m=0,3n=0∴,故答案为D【点睛】此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.2、B【分析】结合“杨辉三角”得出的各项系数,然后考虑符号计算即可.【详解】解:结合“杨辉三角”可得的各项系数(不考虑符号)为:1,9,36,84,126,126,84,36,9,1,由可得,符号为负号,系数为倒数第二个系数9,∴的系数为,故选:B.【点睛】题目主要考查整式的乘法运算规律,理解题意中的“杨辉三角”是解题关键.3、C【分析】利用完全平方公式进行计算判断A,利用幂的乘方运算法则进行计算判断,根据单项式乘单项式的运算法则进行计算判断,根据零指数幂的运算法则进行计算判断.【详解】解:、原式,原计算错误,故此选项不符合题意;B、原式,原计算错误,故此选项不符合题意;C、原式,原计算正确,故此选项符合题意;D、原式,原计算错误,故此选项不符合题意;故选:.【点睛】本题考查整式的混合运算,掌握幂的乘方,完全平方公式的结构是解题关键.4、C【分析】由可得,根据幂的乘方及同底数幂运算法则可得=,把代入即可得答案.【详解】∵,∴,∴=====9.故选:C.【点睛】本题考查幂的乘方及同底数幂乘法,幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变,指数相加;熟练掌握运算法则是解题关键.5、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.【详解】解:,,,,解得,,所以.故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.6、B【分析】根据积的乘方、完全平方公式、同类项的合并等知识即可作出判断.【详解】解:选项A与D,相加的两项不是同类项,故不能相加,故错误;B选项,根据积的乘方可得正确;D选项,,故错误;故选:B【点睛】本题考查了积的乘方、完全平方公式、同类项的合并,掌握它们是关键.7、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解:,,,解得:故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.8、D【分析】直接利用合并同类项,单项式乘单项式法则,同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【详解】解:A.x2+x2=2x2,故本选项错误;B.2(a﹣1)=2a﹣2,故本选项错误;C.3a2•2a3=6a5,故本选项错误;D.(x2y)3=x6y3,故本选项正确.故选:D.【点睛】此题主要考查了整式运算,正确掌握相关运算法则是解题关键.9、D【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;C、x3﹣2x2y+xy2=x(x-y)2,故本选项不合题意;D、x2+y2+x2y2不能因式分解,故本选项符合题意;故选:D.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.10、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,其中1≤<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】故选:B.【点睛】本题考查了科学记数法,科学记数法一般形式为a×10n,其中1≤<10,确定a和n的值是解题关键.二、填空题1、##【分析】根据单项式乘多项式的运算法则、单项式乘单项式运算法则求解即可.【详解】解:=,故答案为:.【点睛】本题考查单项式乘多项式、单项式乘单项式,算熟练掌握运算法则是解答的关键.2、【分析】由积的乘方的逆运算进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算.3、【分析】,进而得到结果.【详解】解:故答案为:.【点睛】本题考查了零指数幂,负整数幂.解题的关键在于正确的求值.4、2x【分析】可根据完全平方公式或提公因数法分解因式求解即可.【详解】解:∵,∴○可以为2x、-2x、2x-1等,答案不唯一,故答案为:2x.【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.5、【分析】利用零指数幂,绝对值的性质,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了零指数幂,绝对值的性质,熟练掌握零指数幂,绝对值的性质是解题的关键.三、解答题1、(1)-1(2)(3)(4),-25.【分析】(1)先根据零指数幂,负整数指数幂计算,再合并即可求解;(2)先算幂的乘方,再算乘除,最后计算加减即可求解;(3)把作为一个整体,从左往右计算,即可求解;(4)先算括号内的,再计算除法,最后再代入求值,即可求解.(1)解:原式;(2)原式;(3)原式.(4)原式===,当=-5时,原式=-25.【点睛】本题主要考查了幂的混合运算,零指数幂,负整数指数幂,熟练掌握幂的运算法则,零指数幂,负整数指数幂法则是解题的关键.2、(1)120717;121707,171207.(2)1225(3)m=5,n=2【分析】(1)首先把x3-xy2分解因式,然后求出当x=12,y=5时,x-y、x+y的值各是多少,写出可以形成的三个数字密码即可.(2)由题意得:,求出xy的值是多少,再根据x3y+xy3=xy(x2+y2),求出可得的数字密码为多少即可.(3)首先根据密码为2821,可得:当x=25时,x2+(m﹣3n)x﹣6n=(x+3)(x-4),据此求出m、n的值各是多少即可.(1)x3-xy2=x(x-y)(x+y),当x=12,y=5时,x-y=07,x+y=17,可得数字密码是120717;也可以是121707,171207.(2)由题意得:,解得xy=12,而x3y+xy3=xy(x2+y2),∴可得数字密码为1225.(3)∵密码为2821,∴当x=25时,∴x2+(m﹣3n)x﹣6n=(x+3)(x-4),即:x2+(m-3n)x-6n=x2-x-12,∴,解得.【点睛】此题主要考查了因式分解的应用,以及用“因式分解”法产生的密码的方法,要熟练掌握.3、(1)(a+b)2﹣(a﹣b)2=4ab;(2)x+y的值=±2;(3)阴影部分△ACF面积为17.【分析】(1)根据完全平方公式的变形即可求得;(2)根据(1)的关系式,代入数据求值即可;(3)设AC=x,BC=y,根据图形可得x2+y2=32,x+y=10,根据(1)的关系式即可求得的值,进而求得△ACF面积【详解】(1)∵由完全平方公式(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,可得(a+b)2﹣(a﹣b)2=(a2+2ab+b2)﹣(a2﹣2ab+b2,)=4ab,即(a+b)2﹣(a﹣b)2=4ab,故答案为:(a+b)2﹣(a﹣b)2=4ab;(2)由(1)题结果可得,(x+y)2=(x﹣y)2+4xy=16﹣12=4∴x+y=±=±2,∴x+y的值=±2;(3)设AC=x,BC=y则x2+y2=32,x+y=10,∵2xy=(x+y)2﹣(x2+y2)=102﹣32=100﹣32=68,∴xy==34,∴,∴阴影部分△ACF面积为17.【点睛】本题考查了完全平方公式的变形以及完全平方公式与图形面积之间的关系,掌握完全平方公式是解题的关键.4、3x3-12x2y+12xy2【分析】根据被除式=商×除式,所求多项式是3x(x-2y),根据多项式乘多项式的法则计算即可.【详解】解:第一个多项式是:3x(x-2y)=3x2-6xy,正确的结果应该是:(3x2-6xy)(x-2y)=3x3-6x2y-6x2y+12xy2=3x3-12x2y+12xy2.【点睛】题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园小鸡饲养课程设计
- 跨境电商跨境电商税收政策规避手册
- 哈利波特系列观后感
- 打纬机构课程设计
- 小学合唱兴趣班课程设计
- 内河旅客运输船舶结构与安全性评估考核试卷
- 小麦种植农业生产资料价格变动考核试卷
- 服装行业可持续发展时尚方案
- 现代人胃肠健康的挑战与应对
- 小额贷款公司贷款欺诈防范考核试卷
- 第三章人类社会及其发展规律
- 网络信息安全知识考试参考题库300题(含各题型)
- 《特种设备安全法》宣讲
- 【历史】人教版八年级上册历史第8单元第26课教育文化事业的发展课件(共26张)
- 2024秋国家开放大学《马克思主义基本原理》专题测试1-8参考答案
- 新概念英语第二册33课市公开课获奖课件省名师示范课获奖课件
- 企业国际化经营战略规划与实施方案
- 3.3-栈的应用-迷宫求解解析
- 慢性肾衰竭血液透析患者的流行病学调查分析
- 大学生体质健康标准与锻炼方法(吉林联盟)智慧树知到期末考试答案章节答案2024年东北师范大学
- 任职资格体系3-某公司营销销售族销售、供应、客服和职能任职资格
评论
0/150
提交评论