中考数学总复习《方程(组)与不等式(组)的应用》专项测试卷带答案_第1页
中考数学总复习《方程(组)与不等式(组)的应用》专项测试卷带答案_第2页
中考数学总复习《方程(组)与不等式(组)的应用》专项测试卷带答案_第3页
中考数学总复习《方程(组)与不等式(组)的应用》专项测试卷带答案_第4页
中考数学总复习《方程(组)与不等式(组)的应用》专项测试卷带答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《方程(组)与不等式(组)的应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A.1.2x+1100=35060B.1.2x-1100=35060C.1.2(x+1100)=35060D.x-1100=35060×1.22.(某校九年级学生去距学校20km的科技馆研学,一部分学生乘甲车先出发,5min后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为xkm/h,根据题意可列方程()A.201.2x-20x=5 BC.201.2x-20x=112 D3.(2024·赤峰中考)用1块A型钢板可制成3块C型钢板和4块D型钢板;用1块B型钢板可制成5块C型钢板和2块D型钢板.现在需要58块C型钢板、40块D型钢板,问恰好用A型钢板、B型钢板各多少块?如果设用A型钢板x块,用B型钢板y块,则可列方程组为()A.3x+2y=404C.3x+5y=5844.(2024·云南中考)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x,根据题意,下列方程正确的是()A.80(1-x2)=60 B.80(1-x)2=60C.80(1-x)=60 D.80(1-2x)=605.(2024·盐城中考)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.

6.(2024·枣庄薛城区二模)今年植树节,枣庄某中学九年级一班45名同学共同种植一批树苗,如果每人种3棵,则剩余20棵.已知这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问该中学至少购买了甲树苗棵.

7.(2024·扬州中考)为了提高垃圾处理效率,某垃圾处理厂购进A,B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?B层·能力提升8.(2024·齐齐哈尔中考)校团委开展以“我爱读书”为主题的演讲比赛活动,为奖励表现突出的学生,计划拿出200元钱全部用于购买单价分别为8元和10元的两种笔记本(两种都要购买)作为奖品,则购买方案有()A.5种 B.4种 C.3种 D.2种9.(2024·内江中考)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m为“极数”,且m33是完全平方数,则m=10.(2024·贵州中考)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?C层·素养挑战11.(2024·牡丹江中考)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.参考答案A层·基础过关1.(某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为(A)A.1.2x+1100=35060B.1.2x-1100=35060C.1.2(x+1100)=35060D.x-1100=35060×1.22.(某校九年级学生去距学校20km的科技馆研学,一部分学生乘甲车先出发,5min后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为xkm/h,根据题意可列方程(D)A.201.2x-20x=5 BC.201.2x-20x=112 D3.(2024·赤峰中考)用1块A型钢板可制成3块C型钢板和4块D型钢板;用1块B型钢板可制成5块C型钢板和2块D型钢板.现在需要58块C型钢板、40块D型钢板,问恰好用A型钢板、B型钢板各多少块?如果设用A型钢板x块,用B型钢板y块,则可列方程组为(C)A.3x+2y=404C.3x+5y=5844.(2024·云南中考)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x,根据题意,下列方程正确的是(B)A.80(1-x2)=60 B.80(1-x)2=60C.80(1-x)=60 D.80(1-2x)=605.(2024·盐城中考)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为15尺.

6.(2024·枣庄薛城区二模)今年植树节,枣庄某中学九年级一班45名同学共同种植一批树苗,如果每人种3棵,则剩余20棵.已知这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问该中学至少购买了甲树苗80棵.

7.(2024·扬州中考)为了提高垃圾处理效率,某垃圾处理厂购进A,B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?【解析】设B型机器每天处理x吨垃圾,则A型机器每天处理(x+40)吨垃圾根据题意得:500x+40解得:x=60经检验,x=60是所列方程的解,且符合题意.答:B型机器每天处理60吨垃圾.B层·能力提升8.(2024·齐齐哈尔中考)校团委开展以“我爱读书”为主题的演讲比赛活动,为奖励表现突出的学生,计划拿出200元钱全部用于购买单价分别为8元和10元的两种笔记本(两种都要购买)作为奖品,则购买方案有(B)A.5种 B.4种 C.3种 D.2种9.(2024·内江中考)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m为“极数”,且m33是完全平方数,则m=1188或475210.(2024·贵州中考)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?【解析】(1)设种植1亩甲作物需要x名学生,种植1亩乙作物需要y名学生根据题意得:3x+2y答:种植1亩甲作物需要5名学生,种植1亩乙作物需要6名学生;(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【解析】(2)设种植甲作物m亩,则种植乙作物(10-m)亩根据题意得:5m+6(10-m)≤55解得:m≥5∴m的最小值为5.答:至少种植甲作物5亩.C层·素养挑战11.(2024·牡丹江中考)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?【解析】(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x元和y元则3x+2故特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元;(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?【解析】(2)设商店计划购进特级鲜品猴头菇m箱,则购进特级干品猴头菇(80-m)箱则(解得:40≤m≤42∵m为正整数∴m=40,41,42故该商店有三种进货方案分别为:①购进特级鲜品猴头菇40箱,则购进特级干品猴头菇40箱;②购进特级鲜品猴头菇41箱,则购进特级干品猴头菇39箱;③购进特级鲜品猴头菇42箱,则购进特级干品猴头菇38箱;(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.【解析】(3)当购进特级鲜品猴头菇40箱,购进特级干品猴头菇40箱时:根据题意得(40-1)×(50-40)+(40-1)×(180-150)+(50·a10-40)+(180·a解得:a=9;当购进特级鲜品猴头菇41箱,购

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论