版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学试卷(重考)
姓名:年级:学号:
题型选择题填空题解答题判断题计算题附加题总分
得分
评卷入得分
一、选择题(共22题,共110分)
1、如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为
D,且k>0.若AABC与aABD的面积比为1:4,则k值为何?()
1
B.2
4
C.3
4
D.5
【考点】
【答案】D
【解析】解:二、二-x2+4x-k=-(x-2)2+4-k,
・•・顶点D(2,4-k),C(0,-k),
/.0C=k,
11
「△ABC的面积互AB・OC=AB・k,Z\ABD的面积=AB(4-k),△ABC与4ABD的面积比为1:4,.,.k=4(4
4
-k),解得:k=5.
故选:D.
【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的
二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有
交点.当b2-4ac0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac0时,
图像与x轴没有交点.
2、已知a=(-五河)67,b=(-)68,c=(-)69,判断a、b、c三数的大小关系为下列何者?()
A.a>b>c
B.b>a>c
C.b>c>a
D.c>b>a
【考点】
【答案】c
1
【解析】解:因为a=(-巾)67,b=(-)68,c=(-)69,
所以b>c>a,
故选C.
【考点精析】认真审题,首先需要了解有理数大小比较(有理数比大小:1、正数的绝对值越大,这个
数越大2、正数永远比0大,负数永远比0小3、正数大于一切负数4、两个负数比大小,绝对值大的反而
小5、数轴上的两个数,右边的数总比左边的数大6、大数-小数>0,小数-大数<0).
3、有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度
和为多少?()
A.36
B.42
C.45
D.48
【考点】
【答案】D
【解析】解:如图所示:根据题意得:
2y+x=27,3x=15,
其他都不符合三角形条件,解得:x=5,y=11,
..•正角锥所有边的长度和=3x+3y=15+33=48;
故选:D.
【考点精析】解答此题的关键在于理解认识立体图形的相关知识,掌握有些几何图形的各个部分不都
在同一平面内,它们是立体图形.
4、已知a1+a2+・“+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=-9,
则此两等差级数的和相加的结果为多少?()
A.300
B.310
C.600
D.620
【考点】
【答案】B
【解析】解:・・・a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,
*/a2+b30=29,a30+b2=-9,
/.a1+b31+b1+a31=29-9,a3+b29+a29+b3=29-9,…,
J.a1+a2+…+a30+a31+b1+b2+…+b30+b31=(a2+b30+a30+b2)+(a1+b31+b1+a31)+,•,+(a16+b16)=15X
(29-9)+==310.
故选B.
【考点精析】认真审题,首先需要了解数与式的规律(先从图形上寻找规律,然后验证规律,应用规律,
即数形结合寻找规律).
5、如图,四边形ABCD中,AB=AD,BC=DC,ZA=90",ZABC=105°.若AB=5亚,贝l]Z\ABD外心与ABCD外
心的距离为何?(
A.5
B.56
10
c.T
D.
【考点】
【答案】A
【解析】解:如图,连接AC,作DFJLBC于F,AC与BD、DF交于点E、G.
,/AB=AD,CB=CD,
.,.AC垂直平分BD,
ZBAD=90°,
ZABD=ZADB=45°,
,.■ZABC=105°,
ZCBD=60",:CB=CD,
•••△BCD是等边三角形,AABD是等腰直角三角形,
...点E是ABAD的外心,点G是ABCD的外心,
在RTZiABD中,•.•AB=AD=5,”.-.BD=10/:,.•.BE=DE=5,在RTZXEDG中,:NDEG=90°,ZEDG=30°,ED=5%
.".tan300=f,
.-.EG=5.
.'.△ABD外心与4BCD外心的距离为5.
故选A.
【考点精析】本题主要考查了三角形的外接圆与外心的相关知识点,需要掌握过三角形的三个顶点的
圆叫做三角形的外接圆,其圆心叫做三角形的外心才能正确解答此题.
6、坐标平面上,某个一次函数的图形通过(5,0)、(10,-10)两点,判断此函数的图形会通过下列哪
一点?()
14
A.(7,97)
15
B.(8,98)
17
C.(9,99)
19
D.(10,910)
【考点】
【答案】C
【解析】解:设该一次函数的解析式为y=kx+b,
将点(5,0)、(10,-10)代入到y=kx+b中得:
件5k他锐2少日1
I用牛货于:-10.
..•该一次函数的解析式为y=-2x+10.
154135
A、y=-2X7+10=97=#97,A中点不在直线上;B、y=-2X百+10=9彳片93B中点不在直线上;C、y=
17149
-2X9+10=99,C中点在直线上;D、y=-2X10+10=95*910,D中点不在直线上.
故选C.
【考点精析】掌握确定一次函数的表达式是解答本题的根本,需要知道确定一个一次函数,需要确定
一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.
7、如图的七边形ABCDEFG中,AB、DE的延长线相交于0点.若图中N1、N2、N3、N4的外角的角度和
B.45
C.50
D.60
【考点】
【答案】A
【解析】解:延长BC交0D与点M,如图所示.
:多边形的外角和为360°,
AZ0BC+ZMCD+ZCDM=360°-220°=140°.
:四边形的内角和为360°,
.-.ZB0D+Z0BC+1800+ZMCD+ZCDM=360°,
.,.ZB0D=40°.
故选A.
【考点精析】通过灵活运用多边形内角与外角,掌握多边形的内角和定理:n边形的内角和等于(n-2)
180。.多边形的外角和定理:任意多边形的外角和等于360。即可以解答此题.
8、已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2-4,乙与丙
相乘为x2+15x-34,则甲与丙相加的结果与下列哪一个式子相同?()
A.2x+19
B.2x-19
C.2x+15
D.2x-15
【考点】
【答案】A
【解析】解:,;x2-4=(x+2)(x-2),
x2+15x-34=(x+17)(x-2),
乙为x-2,
甲为x+2,丙为x+17,
二甲与丙相加的结果x+2+x+17=2x+19.
故选:A.
9、判断2丫而*-1之值介于下列哪两个整数之间?()
A.3,4
B.4,5
C.5,6
D.6,7
【考点】
【答案】C
【解析】解:支四二啊,且,顾VV质,即6<2V7,.WVZ-V,
故选:C.
10、某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出
与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的
座位数比为何?()
A.2:1
B.7:5
C.17:12
D.24:17
【考点】
【答案】C
【解析】解:设一楼座位总数为7x,则一楼售出座位4x个,未售出座位3x个,
二楼座位总数为5y,则二楼售出座位3y个,未售出座位2y个,
c3
4x+3x/17
34x+3y-------------=-=17
根据题意,知:3x=2y,即y=7x,则3x+2y=3x+2x产=荏=五,
故选:C.
11、表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何
者正确?()
A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男
生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数
【考点】
【答案】A
31
【解析】解:由表可知,男生成绩共30个数据,,Q1的位置是"7彳,Q3=^=234,
则男生成绩Q1是第8个数50分,Q3是第23个数90分,
••.男生成绩的四分位距是=20分;
女生成绩共25个数据,
1
••.Q1的位置是的=6滴Q3的位置是噂=19,
则女生成绩Q1是第6、7个数的平均数70,Q3是第19、20个数的平均数70,
••・女生成绩的四分位距是。分,
,.120>0,
男生成绩的四分位距大于女生成绩的四分位距,故A正确,B错误;
^70(分),—150」的OX715+9QX-=70(分),
..•男生成绩的平均数等于女生成绩的平均数,故c、D均错误;
故选:A.
12、如图,△ABC中,ZA=60°,NB=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与4DCB全等,
其作法如下:
(甲)①作NA的角平分线L.
②以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.
(乙)①过B作平行AC的直线L.
②过C作平行AB的直线M,交L于D点,则D即为所求.
对于甲、乙两人的作法,下列判断何者正确?()
A
A.两人皆正确
B.两人皆错误
C.甲正确,乙错误
D.甲错误,乙正确
【考点】
【答案】D
/.ZACB=62",
.,.AB*BC*CA,
由甲的作法可知,BC=BD,
故4ABC和4DCB不可能全等,
故甲的作法错误;
(乙)如图二所示,
图二
VBD/7AC,CD//AB,
・•・NABC二DCB,NACB=ZDBG,
在4ABC和ADCB中,
[ZABCrzna
BC=CB
IZK^ZDtJt
.,.△ABC^ADCB(ASA),
•••乙的作法是正确的.
故选D.
13、桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的
水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量
的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()
A.80
B.110
C.140
D.220
【考点】
【答案】B
【解析】解:设甲杯中原有水a毫升,乙杯中原有水b毫升,丙杯中原有水c毫升,
②-①,得
b-a=110,
故选B.
【考点精析】通过灵活运用解三元一次方程组,掌握通过“代入”或“加减”消元,把“三元”化为
“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程即可以解答此题.
14、如图,菱形ABCD的边长为10,圆0分别与AB、AD相切于E、F两点,且与BG相切于G点.若A0=5,
A
且圆0的半径为3,则BG的长度为何?(
A.4
B.5
0.6
D.7
【考点】
【答案】C
【解析】解:连接0E,
•・・。0与AB相切于E,
ZAE0=90°,
「AO=5,0E=3,
••AE—,
•/AB=10,
/.BE=6,
;BG与。0相切于G,
.-.BG=BE=6,
故选C.
【考点精析】本题主要考查了菱形的性质和切线的性质定理的相关知识点,需要掌握菱形的四条边都
相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角
三角形;菱形的面积等于两条对角线长的积的一半;切线的性质:1、经过切点垂直于这条半径的直线是圆
的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
15、有一个三位数8口2,□中的数字由小欣投掷的骰子决定,例如,投出点数为1,则8口2就为812.小
欣打算投掷一颗骰子,骰子上标有1〜6的点数,若骰子上的每个点数出现的机会相等,则三位数8口2是3
的倍数的机率为何?()
1
A.2
1
B.3
1
C.6
3
D.10
【考点】
【答案】B
【解析】解:投掷一颗骰子,共有6种可能的结果,
当点数为2或4时,三位数8口2是3的倍数,
21
则三位数8口2是3的倍数的机率为吕互,
故选B.
【考点精析】根据题目的已知条件,利用概率公式的相关知识可以得到问题的答案,需要掌握一般地,
如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那
么事件A发生的概率为P(A)=m/n.
16、若满足不等式20<5-2(2+2x)V50的最大整数解为a,最小整数解为b,则a+b之值为何?()
A.-15
B.-16
C.-17
D.-18
【考点】
【答案】C
4919
【解析】解:...20<5-2(2+2x)<50,解得,一不<“<"T,
•.•不等式20<5-2(2+2x)IA.45
B.75
C.81
D.135
【考点】
【答案】B
【解析】解:,.,405=3X3X3X3X5=3X135=9X45=27X15=81X5
J.a和b的公因子有3,5,9,15,27,45,81,135.
.'-75不是a和b的公因子.
故选B【考点精析】根据题目的已知条件,利用有理数的乘法法则的相关知识可以得到问题的答案,
需要掌握有理数乘法法则:1、两数相乘,同号为正,异号为负,并把绝对值相乘2、任何数同零相乘都得
零3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
18、如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和
1
1
B
为b,贝I]a-b之值为何?()
A.5
B.3
C.-3
D.-5
【考点】
【答案】A
【解析】解:由图形可知:
a=-1+0+5=4,
b=-4-1+4=-1,
a-b=4+1=5.
故选:A.
19、如图,梯形ABCD中,AD〃BC,E、F两点分别在AB、AD上,CE与BF相交于G点,若NEBG=25°,NGCB=20°,
NAEG=95。,则NA的度数为何?()
B.100
C.105
D.110
【考点】
【答案】C
【解析】解:「NAEG=NABC+NGCB,
ZABC=ZAEG-ZGCB=95°-20°=75°,
VAD//BC,
AZA+ZABC=180°,
.*.ZA=180°-75°=105°;
故选:C.
【考点精析】本题主要考查了平行线的性质和三角形的外角的相关知识点,需要掌握两直线平行,同
位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;三角形一边与另一边的延长线组成的
角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一
个和它不相邻的内角才能正确解答此题.
11
20、算式2.54■[⑤-1)X(2+2)]之值为何?()
5
A.-4
255
B.-16
C.-25
D.11
【考点】
【答案】A
1145
【解析】解:2.5-?[(5-1)X(2+2)]=2.5+[(-5)x2]
=2.54-(-2)
5
=-4.
故选:A.
【考点精析】本题主要考查了有理数的四则混合运算的相关知识点,需要掌握在没有括号的不同级运
算中,先算乘方再算乘除,最后算加减才能正确解答此题.
2x+y=14
21、若二元一次联立方程式]-3x+2y=21的解为x=a,y=b,则a+b之值为何?()
19
A.T
21
B.T
C.7
D.13
【考点】
【答案】D
【解析】解:
①X2-②得,7x=7,
x=1,代入①中得,2+y=14,
解得y=12,
则a+b=1+12=13,
故选D.
3
22、计算(2x2-4)(2x-1-2X)的结果,与下列哪一个式子相同?()
A.-x2+2
B.x3+4
C.x3-4x+4
D.x3-2x2-2x+4
【考点】
【答案】D
31
【解析】解:(2x2-4)(2x-1-2x),=(2x2-4)(2X-1),
=x3-2x2-2x+4.
故选:D.
【考点精析】关于本题考查的多项式乘多项式,需要了解多项式与多项式相乘,先用一个多项式的每
一项乘另外一个多项式的每一项,再把所得的积相加才能得出正确答案.
二、解答题(共2题,共10分)
23、图1为长方形纸片ABCD,AD=26,AB=22,直线L、M皆为长方形的对称轴.今将长方形纸片沿着L对折
后,再沿着M对折,并将对折后的纸片左上角剪下直角三角形,形成一个五边形EFGHI,如图2.最后将图
2的五边形展开后形成一个八边形,如图2,且八边形的每一边长恰好均相
等.图⑴
(1)若图2中HI长度为x,请以x分别表示剪下的直角三角形的勾长和股长.
(2)请求出图3中八边形的一边长的数值,并写出完整的解题过程.
【考点】
【答案】
(1)
解:延长HI与FE相交于点N,如图所示.L
1
,.,HN=2AD=13,NF=AB=11,HI=EF=x,
.,.NI=HN-HI=13-x,NE=NF-EF=11-x,
..・剪下的直角三角形的勾长为11-x,股长为13-x
(2)
解:在RtZ\ENI中,Nl=13-x,NE=11-x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租借游艇问题课程设计
- 算法综合设计课程设计
- 补货管理的优化与实施方案计划
- 健身器材销售业绩总结
- 2024年烟花爆竹安全的应急预案
- 银行工作总结创新发展成果彰显
- 医药包材采购心得总结
- 娱乐活动行业顾问工作总结提升娱乐活动吸引力
- 服务业会计工作内容分析
- 2024年设备的管理制度范本
- 通用劳务合同Word模板下载(多份)
- 第七讲 磁电选
- 昆虫的农业和经济价值
- 天津市部分区2023-2024学年六年级上学期期末数学试卷
- 长期照护服务流程
- 精心打造东北大学近四年C语言理论考试试题及答案
- 《Power Bi应用》课程标准
- 《疯狂动物城》全本台词中英文对照
- 幼儿园的品格与道德教育主题班会课件
- 2024抗菌药物分级管理及临床合理应用考核试题及答案
- 储能系统的应急预案措施
评论
0/150
提交评论