探究论文:浅谈高中数学课堂教学中的探究式教学_第1页
探究论文:浅谈高中数学课堂教学中的探究式教学_第2页
探究论文:浅谈高中数学课堂教学中的探究式教学_第3页
探究论文:浅谈高中数学课堂教学中的探究式教学_第4页
探究论文:浅谈高中数学课堂教学中的探究式教学_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探究论文:浅谈高中数学课堂教学中的探究式教学【摘要】数学学习的实质是对数学知识的建构、是学生亲自将实际问题抽象成数学模型并进行解释和应用、是学生的思维能力、情感态度与价值观等多方面得到进步和发展的过程。高中课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。本文主要从数学课堂教学实践讨论如何在高中数学课堂教学中展开探究式教学。(1)创设问题情境,培养问题意识;(2)搭建认知脚手架,促进问题解决;(3)关注学科整合,培育探究精神【关键词】探究;问题;能力;课堂教学实践discussesinthehighschoolmathematicsclassroominstructionshallowlytheinquisitiontypeteachingzhanghong【abstract】mathematicsstudy'sessenceistomathematicsknowledgeconstruction,isthestudentbecomestheactualproblemthemathematicalmodelandcarriesonexplainsandapplies,isabstractlypersonallystudent'spowerofthoughtthattheemotionmannerandthevaluesandsoonobtainsvariouslytheprogressandthedevelopmentprocess.thehighschoolcurriculumshouldmakeeveryeffortthrougheachdifferentformindependentstudy,inquisition,letsthestudentexperiencemathematicsdiscoveryandthecreationcourse,developstheirinnovativeideology.howdoesthisarticlemainlydiscussfrommathematicsclassroominstructionpracticelaunchestheinquisitiontypeteachinginthehighschoolmathematicsclassroominstruction.(1)establishmentquestionsituation,raisesthequestionconsciousness;(2)buildcognitionscaffold,promotionquestionsolution;(3)attentiondisciplineconformity,thecultivationinquiresintothespirit【keywords】inquisition;question;ability;classroominstructionpractice所谓探究式教学,就是以探究为主的教学。具体说它是指教学过程是在教师的启发诱导下,以学生独立自主学习和合作讨论为前提,以现行教材为基本探究内容,以学生周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑尝试活动,将自己所学知识应用于解决实际问题的一种教学形式。探究式课堂教学特别重视开发学生的曲线不是轴对称图形.在课堂教学中,教师可引导学生作问题探究,进一步概括出如下结论:(1)正弦曲线、余弦曲线的对称中心都是曲线与x轴的交点,即平衡点:其对称轴都正好是使正弦或余弦函数值取到最大(小)值.(2)正切曲线的对称中心包括曲线与x轴的交点,还包括一些其他在x轴上的点.这样对于研究函数y=asin(ωx+φ)+b、y=acos(ωx+φ)+b的对称性就比较有益.最后归纳发现研究三角函数的对称性的基本思路是:利用三角函数的图象和周期性来研究其对称性.从学生认知的最近发展区设计问题,在解决实际问题过程中通过情境的探索,不断产生新问题;已解决的问题又成为提出新问题的情境,(当然在探究的过程中,部分学生也很自然想到了利用三角形面积为工具,利用平面向量为工具来证明)从而引发在深一层次上去提出问题,进而去解决问题,最终达到问题解决。2搭建认知脚手架,促进问题解决维果斯基认为,在测定儿童智力发展时,应至少确定儿童的两种发展水平:一是儿童现有的发展水平,一种是潜在的发展水平,这两种水平之间的区域称为“最近发展区”。教学应从儿童潜在的发展水平开始,不断创造新的“最近发展区”。认知脚手架应根据学生的“最近发展区”来建立,通过脚手架作用不停地将学生的智力从一个水平引导到另一个更高的水平,探究新问题需要知识的固着点,问题本身与固着点的“潜在距离”愈远,一般说来探究的难度就愈高。由此可见,知识、经验是探究能力的基础,不能离开一定的知识、经验的丰富度去强调探究能力。“脚手架”的设计和给出的关键是要把握探究的新问题与学生原有知识固着点之间的距离“度例如:在函数的单调性的“探究”问题.画出反比例函数y=1/x的图象.(1)这个函数的定义域i是什么?(2)它在定义域i上的单调性是怎样的?证明你的结论.学生按步完成这个探究,用描点法画出函数的图象,写出它的定义域,说出它的单调性,并用定义加以证明.教师指导学生探究,并及时作出概括和评价,共同归纳出探究过程的四个部分,即画图象、写出定义域、判断单调性、证结论,强调整个过程的难点重点即在单调性证明中要注意到分式问题变形方法,一般是通分,对作差比较中的代数式的符号都要作出说明,不等式两边同乘以一个负数时其不等式方向要改变等.设问1:你能说函数y=1/x是减函数吗?强调指出函数的单调性的本质及其单调区间不能求并的根据.设问2:函数y=k/x(k>0)具有怎样的单调性?引导学生通过几何画板作出函数的图象,改变参数k(k>0)使图象呈现出优美的动态曲线,得到函数的单调性,再用定义加以证明.设问3:那反比例函数y=k/x(k≠0)的单调性呢?提示学生注意对系数k>0和k0和t<0分类完成.教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,方程段(下一个)部分1由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记学记》),诱导学生自己探究数学结论,处理好“放”与“扶”的关系。3关注学科整合,培育探究精神高中数学课程应提倡实现信息技术与课程内容的有机整合,两者的整合不但有利学生认识数学的本质,而且有利培育学生求知、求实、进取的探究精神。在教学实践中,我们可以指导学生运用现代信息技术建立“数学实验室”.对某一数学问题或现象,主动探索,通过实验研究构建新知识。函数是中学阶段重要部分,其抽象的概念与性质比较难理解,特别是有关图像的初等变换问题。例如:在教高一三角函数部分内容的知识时,发现学生对平移变换、翻折变换等知识点难以理解,只会死记硬背。通过手动描点画图来研究,很费时,并且影响学生从数形结合的角度进行观察、对比与思考,很难找出数形两种表达式之间的联系,于是决定让学生自己动手探究。例如:问题1:函数的图像与函数、、、的图像之间关系如何?问题2:a.b及绝对值对图像有什么影响?试用计算机探究。引导学生将具体化,让学生取一定数量、不同情况的函数图像作为研究对象,进行尝试。如取,等,让学生自己用计算机大量作图探究在同一坐标系中依次作出与;与;与;与;与;与的图像。这里强调要有规律地选取函数,不要盲目随意画图。学生多次尝试后有了感性认识.再分组讨论、分析,提出假设(猜想规律),让学生用熟悉的函数实证。然后小组交流,让学生深入地理解知识,得出规律,解答问题。再顺势让学生思考:问题3:与、、的图像关系。最后让学生对研究过程反思:刚才是如何研究的?对我们解数学问题有哪些启发?结论是否还可以引申推广?是否还

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论