甘肃肃兰州五十一中2024届高三下北师大版数学试题期末考试试题_第1页
甘肃肃兰州五十一中2024届高三下北师大版数学试题期末考试试题_第2页
甘肃肃兰州五十一中2024届高三下北师大版数学试题期末考试试题_第3页
甘肃肃兰州五十一中2024届高三下北师大版数学试题期末考试试题_第4页
甘肃肃兰州五十一中2024届高三下北师大版数学试题期末考试试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃肃兰州五十一中2024届高三下北师大版数学试题期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.2.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.3.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面4.若时,,则的取值范围为()A. B. C. D.5.双曲线的渐近线方程是()A. B. C. D.6.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A. B. C. D.7.已知正项等比数列满足,若存在两项,,使得,则的最小值为().A.16 B. C.5 D.48.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.9.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.10.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.11.已知复数满足:(为虚数单位),则()A. B. C. D.12.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最大值为__________.14.已知函数若关于的不等式的解集是,则的值为_____.15.已知函数,若恒成立,则的取值范围是___________.16.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=,那么椭圆的方程是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.18.(12分)的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若,求的面积的最大值.19.(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.20.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.21.(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.22.(10分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.2、A【解析】

先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.3、B【解析】

本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误.4、D【解析】

由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.5、C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.6、A【解析】

直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.7、D【解析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.8、B【解析】

据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9、C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.10、A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.11、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.12、B【解析】

根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】

作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.14、【解析】

根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.【详解】解:因为函数,关于的不等式的解集是的两根为:和;所以有:且;且;;故答案为:【点睛】本题主要考查了不等式的解集与参数之间的关系,属于基础题.15、【解析】

求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【详解】因为,所以,因为,所以.当,即时,,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键.16、【解析】

由题意可设椭圆方程为:∵短轴的一个端点与两焦点组成一正三角形,焦点在轴上∴又,∴,∴椭圆的方程为,故答案为.考点:椭圆的标准方程,解三角形以及解方程组的相关知识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.【点睛】本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.18、(1)(2)【解析】

(1)由正弦定理边化角化简已知条件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面积的最大值.【详解】(1),,所以,所以,,,,.(2)由余弦定理得.,,当且仅当时取等,.所以的面积的最大值为.【点睛】本题考查了正余弦定理在解三角形中的应用,考查了三角形面积的最值问题,难度较易.19、(1)证明见解析(2)【解析】

(1)根据面面垂直的判定定理可知,只需证明平面即可.由为菱形可得,连接和与的交点,由等腰三角形性质可得,即能证得平面;(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值.【详解】(1)如图,设与相交于点,连接,又为菱形,故,为的中点.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等边三角形,可得,故平面,所以,,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.不妨设,则,,则,,,,,,设为平面的法向量,则即可取,设为平面的法向量,则即可取,所以.所以二面角的余弦值为0.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理的应用,以及利用向量法求二面角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于基础题.20、(1)证明见解析(2)存在,为中点【解析】

(1)证明面,即证明平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.利用向量方法得,解得,所以为中点.【详解】(1)由于为中点,.又,故,所以为直角三角形且,即.又因为面,面面,面面,故面,又面,所以面面.(2)由(1)知面,又四边形为矩形,则两两垂直.以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.则,设,则,设平面的法向量为,则有,令,则,则平面的一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点.【点睛】本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.21、(1)直线普通方程:,曲线直角坐标方程:;(2).【解析】

(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.【详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【点睛】本题考查极坐标与直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论