![专题14押全国卷(理科)第18题立体几何_第1页](http://file4.renrendoc.com/view8/M02/0D/10/wKhkGWcyo2-ARQAqAAHyCHo6HKY469.jpg)
![专题14押全国卷(理科)第18题立体几何_第2页](http://file4.renrendoc.com/view8/M02/0D/10/wKhkGWcyo2-ARQAqAAHyCHo6HKY4692.jpg)
![专题14押全国卷(理科)第18题立体几何_第3页](http://file4.renrendoc.com/view8/M02/0D/10/wKhkGWcyo2-ARQAqAAHyCHo6HKY4693.jpg)
![专题14押全国卷(理科)第18题立体几何_第4页](http://file4.renrendoc.com/view8/M02/0D/10/wKhkGWcyo2-ARQAqAAHyCHo6HKY4694.jpg)
![专题14押全国卷(理科)第18题立体几何_第5页](http://file4.renrendoc.com/view8/M02/0D/10/wKhkGWcyo2-ARQAqAAHyCHo6HKY4695.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题14押全国卷(理科)第18题立体几何命题规律内容关联考点典型考点预测1四面体面面垂直的证明与线面角2022全国乙卷18·12分★★★2四棱锥面面垂直的证明与二面角2021全国乙卷18·12分3三棱锥面面垂直的证明与二面角2020全国乙卷20·12分秘籍1空间几何体表面积的求解方法1.求多面体的表面积时,把各个面的面积相加即可.2.求旋转体(球除外)的表面积时,将旋转体(球除外)展成平面图形求其面积,注意弄清楚它们的底面半径、母线长与对应侧面展开图中的边长关系.3.求不规则几何体的表面积时,通常将所给几何体分割或补形成基本的柱、锥、台体.先求出这些基本的柱、锥、台体的表面积,再通过求和或作差获得所求几何体的表面积.秘籍2空间几何体体积的求解方法1.公式法:当所给几何体是常见的柱、锥、台等规则的几何体时,可以直接代入各自几何体的体积公式进行计算.2.割补法:求不规则几何体的体积时,可以将所给几何体分割成若干个常见的几何体,分别求出这些几何体的体积,从而得出所求几何体的体积.3.等体积转化法:利用三棱锥的特性,即任意一个面都可以作为底面,从而进行换底换高计算.此种方法充分体现了数学的转化思想,在运用过程中要充分注意距离之间的等价转化.1.【2022全国乙卷18·12分】如图,四面体中,,E为的中点.(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.【命题意图】本题考查面面垂直的证明及线面角的计算,考查直观想象与逻辑推理的核心素养.难度:中等.【解析】(1)因为,点E为AC中点,所以,因为,所以△ABD≌△CBD,,因为点E为AC中点,所以,因为,所以平面BED,因为平面ACE,所以平面ACE平面BED.(2)连接,由(1)知,平面,因为平面,所以,所以,当时,最小,即的面积最小.因为,所以,又因为,所以是等边三角形,因为E为的中点,所以,,因为,所以,在中,,所以.以为坐标原点建立如图所示的空间直角坐标系,则,所以,设,则=,因为,所以,所以,所以,设平面ABD的一个法向量,则,即,取,则,设CF与平面ABD所成角为,则.所以CF与平面ABD所成角的正弦值为.【点评】高考试卷中立体几何解答题一般有2问,第一问多为线面位置关系的证明或长度、面积、体积的计算,第二问多为利用空间向量线面角或二面角(有时也可不利用空间向量),在高考中立体几何解答题一般难度不大,属于得分题,利用空间向量求空间角,运算错误是失分主要原因.【知识链接】直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sinθ=|cosβ|=eq\f(|a·n|,|a||n|).利用空间向量求直线与平面所成的角,可以有两种方法:①通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角;②分别求出斜线和它在平面内的射影的方向向量,再转化为求这两个方向向量的夹角(或其补角).注意:直线与平面所成角的取值范围是eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).2.【2021全国乙卷18·12分】如图,四棱锥的底面是矩形,底面,,为的中点,且.(1)求;(2)求二面角的正弦值.【答案】(1);(2)【解析】【分析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知条件得出,求出的值,即可得出的长;(2)求出平面、的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【详解】(1)[方法一]:空间坐标系+空间向量法平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设,则、、、、,则,,,则,解得,故;[方法二]【最优解】:几何法+相似三角形法如图,连结.因底面,且底面,所以.又因为,,所以平面.又平面,所以.从而.因为,所以.所以,于是.所以.所以.[方法三]:几何法+三角形面积法如图,联结交于点N.由[方法二]知.在矩形中,有,所以,即.令,因为M为的中点,则,,.由,得,解得,所以.(2)[方法一]【最优解】:空间坐标系+空间向量法设平面的法向量为,则,,由,取,可得,设平面的法向量为,,,由,取,可得,,所以,,因此,二面角的正弦值为.[方法二]:构造长方体法+等体积法如图,构造长方体,联结,交点记为H,由于,,所以平面.过H作的垂线,垂足记为G.联结,由三垂线定理可知,故为二面角的平面角.易证四边形是边长为的正方形,联结,.,由等积法解得.在中,,由勾股定理求得.所以,,即二面角的正弦值为.【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.20.【2020全国乙卷20·12分】如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由分别为,的中点,,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)连接,先求证四边形是平行四边形,根据几何关系求得,在截取,由(1)平面,可得为与平面所成角,即可求得答案.【详解】(1)分别为,的中点,又在中,为中点,则又侧面为矩形,由,平面平面又,且平面,平面,平面又平面,且平面平面又平面平面平面平面平面(2)连接平面,平面平面根据三棱柱上下底面平行,其面平面,面平面故:四边形是平行四边形设边长是()可得:,为的中心,且边长为故:解得:在截取,故且四边形是平行四边形,由(1)平面故为与平面所成角在,根据勾股定理可得:直线与平面所成角的正弦值:.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.1.(2023·贵州铜仁·统考二模)如图,在直三棱柱中,,.(1)试在平面内确定一点H,使得平面,并写出证明过程;(2)若平面与底面所成的锐二面角为60°,求平面与平面所成锐二面角的余弦值.【答案】(1)答案见解析;(2).【分析】(1)根据线面垂直和面面垂直的判定定理,结合面面垂直的性质定理进行证明即可;(2)建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)取棱BC的中点D,连接,AD.在等腰直角△ABC中,,又,平面,故平面.又平面,故平面平面,这两个平面的交线为.在中,作,则有平面;(2)如图,建立空间直角坐标系,设,则,,,.设平面的法向量,则即可取.可取平面的法向量,由题意得.得,平面的一个法向量为;又平面的法向量,则.所以平面与平面所成锐二面角的余弦值为.2.(2023·广东肇庆·统考二模)如图,三棱柱中,侧面为矩形,且为的中点,.(1)证明:平面;(2)求平面与平面的夹角的余弦值.【答案】(1)证明见解析(2)【分析】(1)连接与交于点,连接,则,利用线面平行的判定定理即可证明;(2)由已知条件得面,则,由得.以为坐标原点,分别为轴,轴,轴建立空间直角坐标系,由面得平面的一个法向量为,设平面的法向量为,由求得,然后利用向量夹角公式求解即可.【详解】(1)连接与交于点,连接为三棱柱,为平行四边形,点为的中点又为的中点,则,又平面平面,平面.(2)解法1:,面面,,,即以为坐标原点,分别为轴,轴,轴建立空间直角坐标系,面,则平面的一个法向量为设平面的法向量为,则,即令设平面与平面的夹角为,平面与平面的夹角的余弦值是.解法2:设点为的中点,点为的中点,连接交于点,连接,设点为的中点,连接点为的中点,点为的中点且,点为的中点为矩形,又平面,在中,,可得为等腰直角三角形,其中而点为的中点,且点为的中点,点为的中点且,又在Rt中,,点为的中点,在中,,且点为的中点且即为平面与平面的夹角在中,.平面与平面的夹角的余弦值是.3.(2023·江苏·二模)已知矩形,,为的中点,现分别沿,将和翻折,使点重合,记为点.(1)求证:(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【分析】(1)取的中点,连接,先利用线面垂直判定定理证得平面,再由线面垂直性质得证;(2)先利用线面垂直判定定理证得,可得为直线与平面所成角的平面角,从而得解.【详解】(1)已知矩形,沿,将和翻折,使点重合,记为点,可得,取的中点,连接,,,,,又,,,平面,,;(2),,,,又四边形为矩形,,,,为直线与平面所成角的平面角,,即直线与平面所成角的正弦值为.4.(2023·内蒙古通辽·校考二模)如图,正三棱柱的底面边长为,侧棱,是延长线上一点,且(1)求证:直线平面;(2)求二面角的大小.【答案】(1)见解析;(2)【分析】(1)证明四边形是平行四边形,得即可证明;(2)过作于,连结,得是二面角的平面角.在中,计算即可求解【详解】(1),又,∴四边形是平行四边形,∴又平面,平面,∴直线平面(2)过作于,连结,∵平面是二面角的平面角.∵是的中点,在中,∴即二面角的大小为【点睛】本题考查线面平行的判定,考查二面角的求法,考查空间想象能力,是基础题5.(2023·浙江温州·统考二模)已知三棱锥中,△是边长为3的正三角形,与平面所成角的余弦值为.(1)求证:;(2)求二面角的平面角的正弦值.【答案】(1)证明见解析(2)【分析】(1)取中点为,连接,由正四面体的性质得,再由线面垂直的判定及性质证明结论;(2)取中点为,连接,由正四面体的性质和二面角的定义知为所求二面角的平面角,进而求其正弦值.【详解】(1)如图所示,取中点为,连接,O为△BCD的中心,因为△是边长为3的正三角形,,则面,又与平面所成角的余弦值为,所以,即,即三棱锥是正四面体,所以,又平面,所以平面,又平面,所以.(2)如图所示,取中点为,连接,由(1)知:三棱锥是正四面体,则,所以二面角的平面角为,另一方面,,所以由余弦定理得,所以,所以二面角的平面角的正弦值.6.(2023·四川广安·统考二模)如图,在三棱锥中,为的内心,直线与交于,,.(1)证明:平面平面;(2)若,,,求二面角的余弦值.【答案】(1)证明见解析(2)【分析】(1)设平面,垂足为,作于,于,连接,先证明,从而可证得,从而可得点为的内心,即两点重合,再根据面面垂直的判定定理即可得证;(2)如图,以点为原点建立空间直角坐标系,利用等面积法求得内切圆的半径,再利用勾股定理求得,即可得的坐标,再利用向量法求解即可.【详解】(1)设平面,垂足为,作于,于,连接,因为平面,平面,所以,又平面,所以平面,又平面,所以,因为平面,所以平面,又平面,所以,在和中,因为,所以,所以,在和中,,所以,所以,即点到的距离相等,同理点到的距离相等,所以点为的内心,所以两点重合,所以平面,又因平面,所以平面平面;(2)如图,以点为原点建立空间直角坐标系,则,设内切圆的半径为,则即,解得,故,则,则,设平面的法向量,则,可取,设平面的法向量,则,可取,则,由图可得二面角为锐角,所以二面角的余弦值为.7.(2023·吉林延边·统考二模)如图1,在中,,分别为,的中点,为的中点,,.将沿折起到的位置,使得平面平面,如图2.(1)求证:.(2)求直线和平面所成角的正弦值.(3)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.【答案】(1)证明见解析;(2);(3)存在,.【分析】(1)推导出,,从而,进而,由此得到平面,从而能证明;(2)取中点,连接,,再由,,建立空间直角坐标系,利用法向量能求出直线和平面所成角的正弦值;(3)线段上存在点适合题意,设,其中,利用向量法能求出线段上存在点适合题意,且.【详解】(1)因为在中,,分别为,的中点,所以,.所以,又为的中点,所以.因为平面平面,且平面,所以平面,所以.(2)取的中点,连接,所以.由(1)得,.如图建立空间直角坐标系.由题意得,,,,.所以,,.设平面的法向量为.则即令,则,,所以.设直线和平面所成的角为,则.故所求角的正弦值为.(3)线段上存在点适合题意.设,其中.设,则有,所以,,,从而,所以,又,所以令,整理得.解得.所以线段上存在点适合题意,且.【点睛】本题考查了立体几何中的面面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.8.(2023·陕西西安·统考二模)在如图所示的多面体中,平面,四边形为矩形.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值.【答案】(1)证明见解析(2).【分析】(1)由线面平行的判定证平面、平面,再由面面平行的判定证结论;(2)证两两相互垂直,构建空间直角坐标系并求面法向量、,应用向量夹角坐标表示求线面角.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代热风系统在医疗设备中的应用案例
- 现代口腔门诊的通风与空气质量设计
- 烘焙坊经营中的供应链优化
- 现代科技助力教育普及与均衡发展
- 环境友好的商业产品设计案例分享
- 国庆节儿童泥塑活动方案
- 10《雨和雪》 说课稿-2024-2025学年科学六年级上册人教鄂教版
- 2023三年级数学上册 五 解决问题的策略练习十(2)说课稿 苏教版
- 2024-2025学年高中历史 专题二 近代中国资本主义的曲折发展 2.2 民国时期民族工业的曲折发展说课稿1 人民版必修2
- 《11 剪纸花边》 说课稿-2024-2025学年科学一年级上册湘科版
- 《水电站继电保护》课件
- 沈阳市第一届“舒心传技 莘绅向阳”职业技能大赛技术工作文件-27-全媒体运营师
- 安全生产网格员培训
- 深圳建筑工程公司财务管理制度
- 统编版语文三年级下册第三单元综合性学习中华传统节日 活动设计
- 降低顺产产妇产后2小时失血率PDCA成果汇报书
- 2024年山东泰安市泰山财金投资集团有限公司招聘笔试参考题库含答案解析
- 新媒体文案创作与传播精品课件(完整版)
- 2022年全省百万城乡建设职工职业技能竞赛暨“华衍杯”江苏省第三届供水安全知识竞赛题库
- 广西北海LNG储罐保冷施工方案
- 产业园工程施工组织设计(技术标近200页)
评论
0/150
提交评论