




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ContractNo.DE-AC36-08GO28308
EvaluationofGlobalClimateModelsforUseinEnergyAnalysis
GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2
1NationalRenewableEnergyLaboratory
2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch
NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy
OperatedbytheAllianceforSustainableEnergy,LLC
TechnicalReport
NREL/TP-6A20-90166August2024
NationalRenewableEnergyLaboratory
15013DenverWestParkwayGolden,CO80401
303-275-3000•
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ContractNo.DE-AC36-08GO28308
EvaluationofGlobalClimateModelsforUseinEnergyAnalysis
GrantBuster,1SlaterPodgorny,1LauraVimmerstedt,1BrandonBenton,1andNicholasD.Lybarger2
1NationalRenewableEnergyLaboratory
2U.S.NationalScienceFoundationNationalCenterforAtmosphericResearch
SuggestedCitation
Buster,Grant,SlaterPodgorny,LauraVimmerstedt,BrandonBenton,andNicholasD.
Lybarger.2024.EvaluationofGlobalClimateModelsforUseinEnergyAnalysis.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-6A20-90166.
/docs/fy24osti/90166.pdf.
NRELisanationallaboratoryoftheU.S.DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergy
OperatedbytheAllianceforSustainableEnergy,LLC
TechnicalReport
NREL/TP-6A20-90166August2024
NOTICE
Thisworkwasauthored[inpart]bytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.FundingprovidedbytheDOEOfficeofEnergyEfficiencyandRenewableEnergy(EERE),theDOEOfficeofElectricity(OE),theDOEOfficeofFossilEnergyandCarbonManagement(FECM),andtheDOEOfficeofCybersecurity,EnergySecurity,andEmergencyResponse(CESER).TheviewsexpressedhereindonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailable
freevia
www.OSTI.gov.
CoverPhotosbyDennisSchroeder:(clockwise,lefttoright)NREL51934,NREL45897,NREL42160,NREL45891,NREL48097,NREL46526.
NRELprintsonpaperthatcontainsrecycledcontent.
iii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
TableofContents
TableofContents iii
ListofFigures iii
ListofTables v
1Abstract 1
2Introduction 1
3DataandMethods 2
4ResultsandDiscussion 8
5Conclusion 16
ListofAcronyms 17
CodeandDataAvailability 17
Acknowledgements 18
References 19
ReferencesforGCMs 22
AppendixA.NERCRegion:MidwestReliabilityOrganization(MRO) 27
AppendixB.NERCRegion:NortheastPowerCoordinatingCouncil(NPCC) 33
AppendixC.NERCRegion:ReliabilityFirst(RF) 39
AppendixD.NERCRegion:SoutheasternElectricReliabilityCorporation(SERC) 45
AppendixE.NERCRegion:TexasReliabilityEntity(TexasRE) 51
AppendixF.NERCRegion:WesternElectricityCoordinatingCouncil(WECC) 57
AppendixG.OffshoreWindRegion:Atlantic 63
AppendixH.OffshoreWindRegion:Gulf 66
AppendixI.OffshoreWindRegion:Pacific 69
ListofFigures
Figure1.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
CONUS 12
Figure2.ComparisonofGCMdailymaximumairtemperatureeventsforCONUS 12
Figure3.ComparisonofGCMdailyminimumairtemperatureeventsforCONUS 13
Figure4.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
CONUS 13
Figure5.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforCONUS 14
Figure6.ComparisonofGCMminimumannualrainfallsforCONUS 14
Figure7.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforCONUS 15
Figure8.ComparisonofGCMtrendsinchangestodailyaverageGHIforCONUS 15
Figure9.NERCRegion:MRO(includedstatesshadedingrey) 27
Figure10.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforMRO.
29
Figure11.ComparisonofGCMdailymaximumairtemperatureeventsforMRO 29
Figure12.ComparisonofGCMdailyminimumairtemperatureeventsforMRO 30
Figure13.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
MRO 30
Figure14.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforMRO 31
Figure15.ComparisonofGCMminimumannualrainfallsforMRO 31
Figure16.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforMRO 32
Figure17.ComparisonofGCMtrendsinchangestodailyaverageGHIforMRO 32
Figure18.NERCRegion:NPCC(includedstatesshadedingrey) 33
Figure19.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
NPCC 35
iv
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Figure20.ComparisonofGCMdailymaximumairtemperatureeventsforNPCC 35
Figure21.ComparisonofGCMdailyminimumairtemperatureeventsforNPCC 36
Figure22.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
NPCC 36
Figure23.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforNPCC 37
Figure24.ComparisonofGCMminimumannualrainfallsforNPCC 37
Figure25.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforNPCC 38
Figure26.ComparisonofGCMtrendsinchangestodailyaverageGHIforNPCC 38
Figure27.NERCRegion:RF(includedstatesshadedingrey) 39
Figure28.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforRF.41
Figure29.ComparisonofGCMdailymaximumairtemperatureeventsforRF 41
Figure30.ComparisonofGCMdailyminimumairtemperatureeventsforRF 42
Figure31.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityforRF.
42
Figure32.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforRF 43
Figure33.ComparisonofGCMminimumannualrainfallsforRF 43
Figure34.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforRF 44
Figure35.ComparisonofGCMtrendsinchangestodailyaverageGHIforRF 44
Figure36.NERCRegion:SERC(includedstatesshadedingrey) 45
Figure37.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
SERC 47
Figure38.ComparisonofGCMdailymaximumairtemperatureeventsforSERC 47
Figure39.ComparisonofGCMdailyminimumairtemperatureeventsforSERC 48
Figure40.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
SERC 48
Figure41.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforSERC 49
Figure42.ComparisonofGCMminimumannualrainfallsforSERC 49
Figure43.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforSERC 50
Figure44.ComparisonofGCMtrendsinchangestodailyaverageGHIforSERC 50
Figure45.NERCRegion:TexasRE(includedstatesshadedingrey) 51
Figure46.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperatureforTexas
RE 53
Figure47.ComparisonofGCMdailymaximumairtemperatureeventsforTexasRE 53
Figure48.ComparisonofGCMdailyminimumairtemperatureeventsforTexasRE 54
Figure49.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
TexasRE 54
Figure50.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforTexasRE 55
Figure51.ComparisonofGCMminimumannualrainfallsforTexasRE 55
Figure52.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforTexasRE.56
Figure53.ComparisonofGCMtrendsinchangestodailyaverageGHIforTexasRE 56
Figure54.NERCRegion:WECC(includedstatesshadedingrey) 57
Figure55.ComparisonofGCMtrendsinchangestodailyaveragenear-surfaceairtemperaturefor
WECC 59
Figure56.ComparisonofGCMdailymaximumairtemperatureeventsforWECC 59
Figure57.ComparisonofGCMdailyminimumairtemperatureeventsforWECC 60
Figure58.ComparisonofGCMtrendsinchangestodailyaveragenear-surfacerelativehumidityfor
WECC 60
Figure59.ComparisonofGCMtrendsinchangestodailyaverageprecipitationforWECC 61
Figure60.ComparisonofGCMminimumannualrainfallsforWECC 61
Figure61.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforWECC 62
Figure62.ComparisonofGCMtrendsinchangestodailyaverageGHIforWECC 62
v
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Figure63.OffshoreWindRegion:Atlantic(includedareashadedingrey) 63
Figure64.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheAtlantic
OffshoreRegion 65
Figure65.OffshoreWindRegion:Gulf(includedareashadedingrey) 66
Figure66.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedfortheGulf
OffshoreRegion 68
Figure67.OffshoreWindRegion:Pacific(includedareashadedingrey) 69
Figure68.ComparisonofGCMtrendsinchangestodailyaverage100-meterwindspeedforthePacific
OffshoreRegion 71
ListofTables
Table1.SummaryofGCMssurveyedandusedinthisreport 3
Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets 5
Table3.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforCONUS.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 11
Table4.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforMRO.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 28
Table5.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforNPCC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 34
Table6.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforRF.Valuesforagiven
metricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodarkred) 40
Table7.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforSERC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 46
Table8.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforTexasRE.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 52
Table9.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforWECC.Valuesfora
givenmetricineachrowarerankedfrombesttoworsthistoricalskill(darkbluetodark
red) 58
Table10.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheAtlanticOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 64
Table11.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsfortheGulfOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 67
Table12.SummaryofhistoricalGCMskillusingKSstatisticandbiasmetricsforthePacificOffshore
Region.Valuesforagivenmetricineachrowarerankedfrombesttoworsthistoricalskill
(darkbluetodarkred) 70
1
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
1Abstract
Theinterplaybetweenenergy,climate,andweatherisbecomingmorecomplexduetoincreasing
contributionsofrenewableenergygeneration,energystorage,electrifiedenduses,andthe
increasingfrequencyofextremeweatherevents.Energysystemanalysescommonlyrelyon
meteorologicalinputstoestimaterenewableenergygenerationandenergydemand;however,
theseinputsrarelyrepresenttheestimatedimpactsoffutureclimatechange.Climatemodelsandpubliclyavailableclimatechangedatasetscanbeusedforthispurpose,buttheselectionof
inputsfromthemyriadofavailablemodelsanddatasetsisanuancedandsubjectiveprocess.Inthiswork,weassessdatasetsfromvariousglobalclimatemodels(GCMs)fromtheCoupled
ModelIntercomparisonProjectPhase6(CMIP6).Wepresentevaluationsoftheirskillswith
respecttothehistoricalclimateandcomparisonsoftheirfutureprojectionsofclimatechangefortwoclimatechangescenarios.Wepresenttheresultsfordifferentclimaticandenergysystem
regionsandincludeinteractivefiguresintheaccompanyingsoftwarerepository.PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetrics
specificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermalcooling,hydropower,wateravailability,solarenergygeneration,andwind
energygeneration.WefocusonGCMoutputmeteorologicalvariablesthatdirectlyaffecttheseenergysystemcomponentsincludingtherepresentationofextremevaluesthatcandrivegrid
resilienceevents.Theobjectiveofthisworkisnottorecommendthebestclimatemodelanddatasetforagivenanalysis,butinsteadtoprovideareferencetofacilitatetheselectionof
climatemodelsandscenariosinsubsequentwork.
2Introduction
Energysystemanalysescommonlyusehistoricalweatherdatasetsasinputtoenergygenerationanddemandmodels(Brinkmanetal.2021;Carvalloetal.2023;Stencliketal.2021;Sharpetal.2023).Recently,moreworkhasstartedtoincorporatetheimpactsofclimatechangeonthese
inputs(Bloomfieldetal.2016;Yalewetal.2020;Craigetal.2018).GCMsandtheirassociatedpublicly-availabledatasetsfromCMIP6areavaluableresourceforestimatingtheimpactsof
climatechange(Eyringetal.,2016).However,thereareamyriadofuniqueGCMsdevelopedby
climateresearchinstitutionsaroundtheworld.EachGCMisuniqueinitsphysicaland
parametricformulations,itsskillinrepresentinghistoricalclimateindifferentgeographies,anditssensitivitytoanthropogenicgreenhousegasemissions(Flatoetal.,2013).Forexample,a
givenGCMmayrepresentavariableinthehistoricalclimatewithgreatprecisionbutmaybe
greatlybiasedinseveralothervariables(furtherdiscussedinSection
4)
.Tofurthercomplicatethetopic,CMIP6includesseveralpossibleclimatechangescenariosthatattempttocharacterizedeeplyuncertainhumanfactorsrelatedtothedevelopmentalprogressofcivilizationandour
continuedemissions.Scenarioshavebeendevelopedthatprojectdecreasesinemissionsbymid-century,andothersthatprojectemissionsdecreasingonlyneartheendofthecentury(Riahietal.,2017).Expertsandquantitativemodelsalikehaveperspectivesonwhichscenariosaremorelikely(Hausfather&Peters2020),butwecannotknowwithcertaintywhichfuturewewill
experience.
Priorworkstudyingclimatechangeinappliedimpactstudieshashandledthesenuancesthroughthefollowingprocess:1)comparedatafromvariousGCMswithhistoricalreferencedatasetstoidentifythosethatbestrepresenthistoricalclimate2)selectoneormoreGCMswithgood
2
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
historicalskillandclimatechangescenariosthatencompassarangeofpossibleclimatefutures,3)downscalethelow-resolutionGCMdataforappliedstudies(whenrequiredbyhigh-resolutionapplications),and4)performthesubsequentappliedanalysisusingdomain-specificmodels(Kaoetal.,2022;RalstonFonsecaetal.,2021).ThecomparisonandselectionofinputsfromGCMs
andclimatescenarios(steps#1and#2)isanuancedprocessthatcommonlyincludesthe
quantitativecomparisonofGCMdatasetsusingafewselectedmetricsoverafocusedregionofinterest(Pardingetal.,2020;Ashfaqetal.,2022;Chhinetal.,2018).However,theselectionofGCMs,climatescenarios,andcomparativemetricsareultimatelysubjectivedecisionsand
representvaluejudgementsinachallenginganalyticalprocesswithnoobjectivelybest
methodology.Further,theimpactsofclimatechangearebeingstudiedinanincreasinglywiderangeofapplicationsandthiscomparisonandselectionprocessisoftenveryspecifictoagivenapplication.
ThisreportfocusesonsupportingtheGCMcomparisonandselectionprocessspecificallyforenergyapplicationsintheContiguousUnitedStates(CONUS).PreviousworkhaspresentedsimilarGCMevaluations,butnonehavepresentedvariablesandmetricsspecificallyintendedforcomprehensiveenergysystemsanalysisincludingimpactsonenergydemand,thermal
cooling,hydropower,wateravailability,solarenergygeneration,andwindenergygeneration
(Pardingetal.,2020;Ashfaqetal.,2022;Martinez&Iglesias,2022).Thosethathavefocusedonsomeaspectofenergyimpactshavetypicallyfocusedononevariableoranothersuchasclimateimpactstohydropowerorwindenergy(Martinez&Iglesias,2022),butnonehavepresented
metricsforvariablesthatrepresentthefullenergygenerationanddemandsystem.Thisreportisintendedtofillthatgapandfacilitatemoreinformedselectionsofclimatechangeinputsfor
comprehensiveenergyanalyses.
Thisreportisstructuredasfollows.Section
3
detailsthedatasetsusedinthisreportandthe
methodsusedforGCMevaluation;Section
4
presentsanddiscussestheresultsoftheGCMskillevaluationandthecomparisonoftheirprojectionsfortheContiguousUnitedStates(CONUS);Section
5
concludesthereport;TheappendicespresentsimilarresultstoSection
4
butfor
specificsubregionswithinthelargerCONUSdomain.
3DataandMethods
ThisreportleveragespubliclyavailableclimatechangeprojectionsfromGCMsintheCMIP6
archiveandhistoricaldatafromreferenceandreanalysisdatasets.First,weexploretheavailabledatasetsassociatedwitheachGCMintheCMIP6archiveanddeterminewhichdatasetsare
viableforenergysystemsanalysis.
Forthepurposesofthiswork,welookforGCMdatasetsthatareofcurrentstate-of-the-art
spatiotemporalresolution(e.g.,100kmdaily),thatcontainallvariablesnecessarytomodel
energygenerationanddemand(e.g.,temperature,humidity,precipitation,windspeed,andsolarirradiance),andthathavepublicrecordsintheCMIP6archiveforseveralkeysimulations.Notethatdifferentdownscalingmethodologies(e.g.,dynamicaldownscalingwithregionalclimate
models,RCMs)mayrequirevariablesotherthanthosepresentedhere.However,westillfocusonthissubsetbecausetheyhavedirectimpactsontheenergysystem.
3
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Forthiswork,weselectedtheCMIP6historicalsimulationthatisintendedtorepresentthe
historicalandcurrentclimate,andtwoSharedSocioeconomicPathways(SSPs):SSP24.5,andSSP58.5.NotethattheseSSPshavecorrespondingRelativeConcentrationPathway(RCP)
scenariosfromCMIP5.WeselectedthefirstvariantfromeachGCMexceptforCESM2andCESM2-WACCMwhichhadothervariantswithmorecompletedataavailability.Forthe
comparisonoffutureprojections,weselectdatafromSSP24.5andSSP58.5.Weselectthesetwoscenariosbecauseoftheextensiveuseofthesescenariosinpriorclimateimpactsanalysis(Craigetal.,2020;Kaoetal.,2022;RalstonFonsecaetal.,2021;Martinez&Iglesias2022).
SSP24.5istypicallydescribedasa“middle-of-the-road”emissionsscenariowheretrends
generallyfollowadynamics-as-usualscenario,whileSSP58.5isanaggressivehigh-growthandhighfossilfuelfuturewiththemostoverallemissionsofanyscenario(Riahietal.,2017).
Toinformenergysystemanalysesinwhichdecisionsonenergyinfrastructurearebeingmade
todayandinthecomingseveraldecades,wefocusonprojectionsfromthehistoricalclimate
throughmid-century(e.g.,through2059).DespitethesignificantlydifferentemissiontrajectoriesinSSP24.5andSSP58.5,thetwoscenariosvaryonlyslightlybymid-century(asshownin
Section
4)
withamoredramaticbifurcationoccurringinthelatterhalfofthecentury.
Aftersurveying33GCMswithdatainCMIP6,weselect13GCMsthathavepubliclyavailabledatathatmeettheabovecriteria.Asummaryofthisprocess,theGCMsevaluated,andthe
GCMsselectedispresentedin
Table1
below.
GCMsthatdidnotmeetthecriteriaforthisworkmayhaveadditionalvariablesandscenariosavailablefromdifferentdataarchives.TheseGCMsmaybeusefulforclimateimpactstudies,butbasedontheirdatasetsavailableintheCMIP6archivetheywerenotusedinthiswork.
Table1.SummaryofGCMssurveyedandusedinthisreport.
GCMName
Used
NotesandReference
AWI-CM-1-1-MR
No
Historicalsimulationdoesnotincludeirradiance,precipitation,orhumidity(Semmleretal.,2019).
ACCESS-CM2
No
SSPdataislowspatialresolution(Dixetal.,2019).
BCC-CSM2-MR
No
Doesnotincludehumidity(Xinetal.,2019).
CAMS-CSM1-0
No
Doesnotincludehumidity(Rongetal.,2019).
CanESM5
No
Nodataatdesiredspatiotemporalresolution(Swartetal.,2019)
CESM2
Yes
Usedvariantr4i1p1f1.Othervariants(r1i1p1f1,r2i1p1f1,andr3i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,2019a).
CESM2-WACCM
Yes
Usedvariantr3i1p1f1.Othervariants(r1i1p1f1andr2i1p1f1)donotincludedailymin/maxtemperatures(Danabasoglu,
2019b).
CMCC-CM2-SR5
No
Doesnotincludedailymin/maxtemperatures(Lovatoetal.,2020).
CMCC-ESM2
No
Doesnotincludegeopotentialheight(Lovatoetal.,2021)
CNRM-ESM2-1
No
Doesnotincludeanyrelevantvariablesatdesiredspatiotemporalresolution(Voldoire,2019).
4
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
GCMName
Used
NotesandReference
E3SM-1-0
No
SSPdataatdesiredspatiotemporalresolutiondoesnot
includeirradiance,windspeeds,andhumidity(Baderetal.,2022a).
E3SM-1-1
No
SSPdataisatamonthlyfrequency(Baderetal.,2020).
E3SM-1-1-ECA
No
SSPdataatdesiredspatiotemporalresolutiondoesnot
includeirradiance,windspeeds,andhumidity(Baderetal.,2022b).
E3SM-2-0
No
NodataforSSP58.5(E3SMProject,DOE,2022)
E3SM-2-0-NAARRM
No
NodataforSSP58.5(Tangetal.,2023)
EC-Earth3
Yes
(EC-EarthConsortium,2019a)
EC-Earth3-CC
Yes
(EC-EarthConsortium,2021b)
EC-Earth3-Veg
Yes
(EC-EarthConsortium,2019b)
EC-Earth3-Veg-LR
No
Nodataatdesiredspatiotemporalresolution(EC-EarthConsortium,2020)
FGOALS-f3-L
No
SSPdataisatmonthlyfrequency(Yu,2019).
GFDL-CM4
Yes
(Guoetal.,2018)
GFDL-ESM4
Yes
(Johnetal.,2018)
HadGEM3-GC31-MM
No
NodataforSSP24.5andincompletetimeserieswithlessthan365daysperyear(Jackson,2020)
INM-CM4-8
Yes
(Volodinetal.,2019a)
INM-CM5-0
Yes
(Volodinetal.,2019b)
IPSL-CM6A-LR
No
Nodataatdesiredspatiotemporalresolution(Boucheretal.,2019).
KACE-1-0-G
No
SSPdataisatlowspatialresolution(Byunetal.,2019).
MIROC6
No
Nodataatdesiredspatiotemporalresolution(Shiogamaetal.,2019).
MPI-ESM1-2-HR
Yes
(Schupfneretal.,2019)
MPI-ESM1-2-LR
No
SSPdataisatlowspatialresolution(Wienersetal.,2019).
MRI-ESM2-0
Yes
(Yukimotoetal.,2019)
NorESM2-MM
Yes
(Bentsenetal.,2019)
TaiESM1
Yes
(Leeetal.,2020)
Foreachvariable,weselectahistoricalreferencedatasetthatcanbeusedtoevaluatethe
historicalskilloftheGCMs.Wechoosedatasetsthatarepubliclyavailable,haveatleasta20-yearhistoricalrecord,andhavebeenusedextensivelyinpreviousenergysystemstudies.WeleveragetheEuropeanCentreforMedium-RangeWeatherForecastsReanalysisv5(ERA5),
Daymet,andtheNationalSolarRadiationDatabase(NSRDB)(CopernicusClimateChangeService,2017;Thorntonetal.,2021;Senguptaetal.,2018).Thevariablesanalyzedandtheircorrespondinghistoricalreferencedatasetsaredetailedin
Table2
below.
Thethreehistoricalreferencedatasetsusedinthisworkareallatfinerspatialandtemporal
resolutionsthantheGCMdatabeingevaluated.Weperformageospatialmappingtoaggregatehigh-resolutionhistoricalpixelstotheirnearestlow-resolutionGCMpixel.Thiscreatesasub-
5
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
gridmapping(e.g.,similartoasudokugrid)withoutoverlaporduplicationofthehigh-
resolutionpixels.Asimpleaveragingormin/maxoperationisperformedonthetemporalaxistoaggregatesub-dailydatatotheGCMdailyvalues.
Table2.Summaryofvariablesanalyzedalongwithhistoricalbaselinedatasets.
Variable
Abbreviation
Historical
ReferenceDataset
Resolution
TemporalExtent
Reference
Air
T2M
ERA5
31-kmhourly
1980-2019
Copernicus
Temperature
ClimateChange
(2-meter)
Service,2017
RelativeHumidity(2-meter)
RH2M
ERA5
31-kmhourly
1980-2019
Copernicus
ClimateChangeService,2017
Precipitation
PR
Daymet
4-kmdaily
1980-2019
Thorntonetal.,2021
Global
HorizontalIrradiance
GHI
NSRDB
4-km30-minute
2000-2019
Senguptaetal.,2018
Windspeed(100-meter)
WS100m
ERA5
31-kmhourly
1980-2019
Copernicus
ClimateChangeService,2017
Forthehistoricalskillevaluation,weuse40-yearrecordsfo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- pvc轻质隔墙施工方案
- 的日记300字左右
- 2025年惠州城市职业学院单招职业倾向性测试题库及参考答案
- 2025年共青团知识竞赛试题(附答案)
- 2025年江西司法警官职业学院单招职业适应性测试题库带答案
- 2025年湖南理工职业技术学院单招职业适应性测试题库附答案
- 2025年泉州经贸职业技术学院单招职业技能测试题库新版
- 2025年青岛港湾职业技术学院单招职业倾向性测试题库参考答案
- 2024-2025学年高中化学 第二单元 化学与资源开发利用 2.3 石油、煤和天然气的综合利用教学实录1 新人教版选修2
- 7火山喷发(教学设计)-2023-2024学年科学六年级下册人教鄂教版
- 2024年04月江苏苏州银行春招信息科技类岗位第一批开始笔啦笔试历年参考题库附带答案详解
- 煤化工设备设计与制造技术进展分析考核试卷
- 中国多发性骨髓瘤诊治指南(2024 年修订)
- 【MOOC】实验室安全学-武汉理工大学 中国大学慕课MOOC答案
- DB32T 2836-2015 双孢蘑菇工厂化生产技术规程
- 苹果种植养护培训课件
- 化妆步骤课件教学课件
- 民兵教练员四会教案模板
- 起重吊装作业安全培训考核试卷
- 时政述评巴以冲突课件-2024届高考政治一轮复习
- 三级综合医院评审标准(2024年版)
评论
0/150
提交评论