《直线和平面复习》课堂教学实录_第1页
《直线和平面复习》课堂教学实录_第2页
《直线和平面复习》课堂教学实录_第3页
《直线和平面复习》课堂教学实录_第4页
《直线和平面复习》课堂教学实录_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页共13页《直线和平面复习》课堂教学实录(一)教学目标1.配合系统复习,进一步培养空间想象力;2.借助平面几何中,三角形的重心、垂心、内心、外心等知识,解决立体几何问题.教学重点和难点1.空间想象力的培养;2.分析问题能力与综合运用知识能力的培养.教学设计过程师:同学们已经很好地完成了知识总结的作业,有些同学还将知识的内在联系用图表展示出来.也有的同学将各种位置关系用图形语言和符号语言进行归纳和整理.在此一并提出表扬.我们将把这些总结用展板展示,请同学们互相学习.师:本节课我们将通过一组问题来进行复习.复习的目的之一是进一步培养同学们的空间想象力.关于空间想象力的问题,在高一年级刚开始时,单纯的想象占主导地位,随着一个学期的学习,关于线面的各种位置关系及性质研究的深入,单纯的想象力就转化为:在线面各种位置关系的定义、性质定理指导下的想象.请先看下面一组题目:填空题:1.空间三个平面可能将空间分成______部分.2.正方体各个面所在的平面将空间分成______部分.3.与空间四个点距离相等的平面有______个.*4.A,B,C,D是空间不共面的四点.它们到平面α的距离比(依次)为:2∶1∶1∶1,满足条件的平面α有__个.生:第1题空间三个平面可能将空间分成4或6或7或8部分.师:请你画图说明你的观点.生:(作图)师:很好,图1、图2、图3、图4依次表示三个平面将空间分成4,6,7,8部分.生:第2题答案是27.师:你给同学们解释一下,答案为什么是27.生:(手拿一个粉笔盒)这个粉笔盒近似看成一个正方体,它的上底面与下底之间被分成9部分.同样,上底面上边与下底面下面也各被分成9部分.总计正方体各个面所在的平面将空间分成27部分.师:对于第3小题,需要先证明下面的命题:线段AB与平面α相交,若AB中点C在平面α上,则点A、点B到平面α的距离相等.生A:本题的答案为4,因为经过有公共顶点的三条棱的中点作截面,根据老师刚介绍的引理,可以证明这样的截面符合条件.(如图5)生B:还有一种情况.刚才生A所作平面使已知四个点中有三个在平面的同一侧,另外一个点在另一侧.我想所作平面两侧各有2个点.如图6.这类平面共有3个,即V,A两点在平面同侧;V,B两点在平面同侧;V,C两点在平面同侧.师:刚才两名同学讲的都很好,相互补充,符合条件的平面共有7个.同学们有不同意见吗?……师:刚才两名同学都认为已知四个点不共面,事实上,当这四个点共面时,符合题目要求的平面有无数个.只要与四点所在平面平行的平面都符合要求.生:老师,如果这四个点共线呢?师:当四个点共线时,只要与这条直线平行的平面均符合条件,这个题目的正确答案应该是7个或无数个.分类讨论的方法不仅在代数课上使用,几何学中也经常使用,此题就是按照图形的不同位置关系进行分类讨论.我们继续讨论第4题.生:我认为仿照第3小题的解答,可提出下面引理:若点A、点B师:他的猜测是正确的.这个命题的正确性请同学们课下论证.下面我们讨论第4小题的解法.生A:分别延长AB,AC,AD至B1,C1,D1,使BB1=AB,CC1=AC,DD1=AD,如图7,则平面α就是平面B1C1D1.生B:分别在AB,AC,AD上取点B′,C′,D′,使得:师:分别取BC,CD,DA的中点E,F,G.那么经过EG的任何一个平面都满足:它与B,C,D三点的距离相等,在这些平面中,经过点B′或经过C′D′(因为C′D′∥CD∥GE)的平面符合题目要求.(图8)经过EG有两个平面符合题意.同样,经过EF,FG各有两个平面符合题意,综合以上分析共有8个平面符合题目要求.师:问题5.是否存在一个四面体,它的每个面都是直角三角形?请同学们思考.……生A:我找到一个几何体,它的三个面都是直角三角形.如图

9.∠AVB=∠BVC=∠CVA=90°.生B:我曾经证过生A所给的图中,△ABC是锐角三角形.师:根据两名同学的发言,给我们以下启示:三个面是直角三角形的几个体已经找到;三个直角顶点不能是同一个点!构造∠VAB=∠VAC=90°,且∠BAC≠90°.再构造∠ACB=90°,同学们不难证明∠VCB=90°.生:是根据三垂线定理.师:空间想象力在不同时期有不同要求.上面这个问题如果是高一第一学期开始让同学们作,那就只有想象或动手制做模型.现在解决它,可以借助我们所学的线面位置关系去寻找解决问题的方法,并且在想象结束时,论证想象的合理性.师;如图11,正方体ABCD-A1B1C1D1,P,Q,R分别在C1D1,CC1,AB上.画出截面PQR与正方体各面的交线.由公理知:PQ面DC1.因为面AB1∥面DC1,截面与它们相交,交线必平行(根据面面平行的性质定理).过点R在面AB1中作PQ平行线交AA1于S.PQ交DC于T,TR交BC于E,连结EQ,过S作SF∥EQ交A1D1于F,连FP,则多边形PQERSF的边就是截面PQR与正方体各面的交线.师:同学们请看下面一组题:6.从平面外一点向平面引垂线和斜线,若斜线与平面所成的角都相等,垂足是斜足多边形的______心.7.直角三角形ABC中,∠C是直角,AC=6,BC=8,△ABC所在平面外一点P,PA=PB=PC=13,点P到△ABC所在平面的距离为______.生:垂足是斜足多边形的外心,因为从平面外一点向平面引斜线.它们与平面所成角相等,可以得到它们的长相等,它们在平面内的射影长也相等.师:同学们还可以进一步思考,满足什么条件时,垂足是斜足多边形的内心?垂足有没有可能成为斜足多边形的重心?垂心?做完一道题目之后,不要满足于题目的本身,能够将条件、结论变换后的有关命题进行研究,可达到事半功倍,提高能力的效果.师:根据已知条件,第7小题中,点P在△ABC所在平面上的射影恰为△ABC的外心.由于△ABC是直角三角形,所以由点P引平面ABC的垂线,垂足恰为△ABC斜边AB的中点,你们知道了解题思路吗?生:作PD⊥面ABC于D,由PA=PB=PC,得DA=DB=DC,D是△ABC外心.又因为∠ACB=90°,由平面几何知识,得出D为AB的中点.PA=13,AD=5,PD=12.即点P到平面ABC的距离为12.师:三角形的垂心、内心、外心、重心的知识在立体几何中经常使用.有一些题目本身没有明确给出,如第7小题,恰到好处地运用四心有关的知识,可简化解题过程.下面一道题目也是与三角形的“心”有关的问题.8.如图13,正△ABC边长为a,O为外心,PO⊥面ABC,PA=PB=PC=b,D,E分别为AC,AB的中点,且PA∥面DEFG.求:四边形DEFG的面积.由题设我们能得到哪些有用的结论?生A:因为PA∥面EFGD,由线面平行的性质可得:EF∥PA,GD∥PA,所以EF∥DG.由D,E分别是AB,AC的中点,DE∥BC,所以BC∥面DEFG.进一步得出BC∥FG.综上DEFG是平行四边形.能求出平行四边形DEFG的面积.师:到目前为止,已知条件中还有两条没有发挥作用.①等边△ABC;②O为△ABC的外心,生C:当O为等边三角形外心时,它也是等边△ABC的垂心.即BC⊥AO,又PO⊥面ABC,由三垂线定理知:BC⊥PA.已经证明了EF∥PA,BC∥DE,得出EF⊥DE,EFGD为一矩形,它的面积师:有效地利用“心”的有关概念,较好地解决一些立体几何问题.本节课重点讨论了两个方面的问题;1.关于空间想象力的进一步培养问题.不是空象,要注意有意识地利用各种线面位置关系.2.通过问题,适当复习了平面几何中的“四心”问题,进一步掌握利用“四心”的知识解决的方法.下面布置作业:(略)《直线和平面复习》课堂实录(二)教学目标结合第一章的内容,渗透数学思想方法.(数形结合思想;方程的思想;转化的思想;分类讨论的思想)教学重点和难点数学思想的渗透与培养.教学设计过程师:今天是复习课的最后一节.今天以复习题目中体现的数学思想为主线,研究几种常用数学思想在本章的体现.分类讨论的思想是同学们比较熟悉的.使用较多的是在代数课上y=ax2+bx+c的图象,当a>0时,开口向上;当a<0时,开口向下.几何中,分类讨论思想的应用,主要是依据图形中元素位置关系的不同而展开的.请看以下一组题目:例1

已知:a∥b,直线a平面α,直线b平面α,直线c平面α,c∥a.若直线a与直线b的距离为6cm,直线b与直线c的距离5cm,直线c与平面α的距离为4cm.求:直线a与直线c的距离.(教师画图)生A:在直线c上任取一点A,作AB⊥α于B,过B作BC⊥a于C,反向延长交b于D,因为a∥b,所以BC⊥b.分别连结AC、AD,根据三垂线定理,a⊥AC,b⊥AD.据题意知:CD=6cm,AD=5cm,AB=4cm,在Rt△ABD中,求出BD=3cm,所以BC=3cm,在Rt△ABC中,求出AC=5cm.师:哪位同学对“生A”的解答有补充?师:生A的解答基础是依据我画的图.而原题中并没有给图,也没有“如图”这样的说明,因此我们先要研究图应该怎么画!生B:老师,我对“生A”的发言有补充.这个题目的图形还有以下两种可能:师:好.这道题目体现了分类讨论的思想.它是根据直线c在平面α内射影的不同位置来进行讨论的.生C:老师,我认为还有两种情况:情形1:直线c在平面α内射影与直线a重合.情形2:直线c在平面α内射影与直线b重合.师:“生C”同学的补充很好.例1应该分为5种情况来讨论.但是其中会有一些情况无解,请同学们现在实践一下.图一的位置.其余三种位置关系均无解.师:还有一点提醒同学们注意:对于不同的位置关系,解题时都要给予论述,对于无解的情形要讲清无解的原因。有些同学认为无解就不用写了,这种认识是错误的.再看例2.例2

平面α外两点A,B,它们到平面α的距离分别为a,b,求:点P到平面α的距离.生A:我认为有两种情况:一种是点A、点B在平面α同侧;另一种是点A、点B在平面α异侧.生B:我有不同看法,已知条件中没有给出a,b的大小关系,“生A”解决图5情形时,默认为b>a是不对的,应该再分两种情形:师:“生B”的补充很好,例2不仅在图形的位置关系上分类讨论,还要根据数据a,b的大小关系来分类讨论.如果简化题目,已知条件上补一个条件:b>a,是否上述解答就全面了呢?生C:当A,B两点在两侧时,在图6中,点P不一定在A1B1上方.当b>2a时,点P位于A1B1上方;当b=2a时,点P在A1B1上;师:经过“生C”的补充,题目解答就全面了.下面谈一下方程的思想.在初中阶段,同学们重点研究了列方程解应用题,这就是最基本的方程的思想.通过设未知数,寻求已知量与未知量之间的关系,从而获得问题的解决.下面请看例3.例3

如图7,二面角α-l-β,点B∈l,ABα,BCβ.∠ABD=∠CBD=45°,∠ABC=60°.求:二面角α-l-β的大小.师:首先我们可以根据二面角的平面角的定义构造二面角的平面角.具体作法是:在l上选点D,经过点D分别在α,β平面内作l的垂线交BA,BC于E,F.设AD=α,由∠ABD=45°得BD=a.∠EDF=90°.本例特点在于题目中没有给出任何线段的长度,而是通过设未知量,进而知道已知与未知的关系.例4

二面角α-EF-β为120°,点A∈α,点B∈β,∠ACB为二面角的平面角,且AC=BC=a.在EF上取一点D.问:D点在何处时,∠ADE=∠ADB=∠BDE=θ?为了确定点D的位置,可设与D点有关的某一条线段长为x,依据题设建立等量关系.再求出x的值,同学们实践一下.生A:在EF上取点D,设AD=x.因为

AC=BC=a,∠ACB=120°,因为

∠ADE=∠ADB=∠BDE=0,所以

∠ADC=180°-θ.△ABD中由余弦定理可得:AB2=x2+x2-2x2cosθ,生B:我认为解答不全面,刚才“生A”的解答中,运用了图8中各点之间位置关系.应该给予讨论,当点D位于CF之间时,∠ADC=180°而不是等于180°-θ.师:“生B”的问题提的好,在“生A”的解答中,距点C的距离例5

如图9,∠ASB=90°,∠CSB=75°,∠ASC=105°,由求:△ABC的周长.师:这道题目的难度在于如何建立一座沟通已知与未知的桥梁.生:观察图形,我发现图中有三对全等三角形.△ADS≌△AFS;△FSC≌△ESC;△BES≌△BDS.设∠DSA=α,∠FSC=β,∠ESB=γ.师:上面列举了3个题目,从不同的侧面,以不同的形式反映出方程的思想在立体几何解题中的作用.下面再谈一下转化的思想,转化的内涵十分丰富.有条件的转化;结论的转化;图形的转化;解题策略的转化……事实上,许多题目的解答过程都不同程度在使用转化的思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论