版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都树德中学2024年高三年级第三次模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,集合,,则()A. B.C. D.2.已知角的终边与单位圆交于点,则等于()A. B. C. D.3.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.55.()A. B. C. D.6.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④7.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.8.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.9.若复数z满足,则()A. B. C. D.10.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形11.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.12.设,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最大值为________.14.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.15.直线(,)过圆:的圆心,则的最小值是______.16.已知,,其中,为正的常数,且,则的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.18.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.19.(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.(1)求椭圆的方程;(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.20.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.21.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若,求曲线与的交点坐标;(2)过曲线上任意一点作与夹角为45°的直线,交于点,且的最大值为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.【点睛】本题主要考查了集合的基本运算,难度容易.2、B【解析】
先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.3、B【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。4、D【解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.5、A【解析】
分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.6、D【解析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.7、A【解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.8、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.9、D【解析】
先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.10、B【解析】
化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.11、B【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.12、D【解析】
集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为.故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.14、【解析】
不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.15、;【解析】
求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值.【详解】圆:的标准方程为,圆心为,由题意,即,∴,当且仅当,即时等号成立,故答案为:.【点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”.16、【解析】
把已知等式变形,展开两角和与差的三角函数,结合已知求得值.【详解】解:由,得,,即,,又,,解得:.为正的常数,.故答案为:.【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)不能,证明见解析【解析】
(Ⅰ)计算得到故,,,,计算得到面积.(Ⅱ)设为,联立方程得到,计算,同理,根据得到,得到证明.(Ⅲ)设中点为,根据点差法得到,同理,故,得到结论.【详解】(Ⅰ),,故,,,.故四边形的面积为.(Ⅱ)设为,则,故,设,,故,,同理可得,,故,即,,故.(Ⅲ)设中点为,则,,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.18、(1)证明见解析(2)【解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.【详解】(1)证明:底面为菱形,,底面,平面,又,平面,平面;(2)解:,,为等边三角形,.底面,是直线与平面所成的角为,在中,由,解得.如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系.则,,,,.,,,.设平面与平面的一个法向量分别为,.由,取,得;由,取,得..平面与平面所成锐二面角的余弦值为.【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.19、(1);(2)见解析【解析】
(1)由面积最大值可得,又,以及,解得,即可得到椭圆的方程,(2)假设轴上存在点,是以为直角顶点的等腰直角三角形,设,,线段的中点为,根据韦达定理求出点的坐标,再根据,,即可求出的值,可得点的坐标.【详解】(1)面积的最大值为,则:又,,解得:,椭圆的方程为:(2)假设轴上存在点,是以为直角顶点的等腰直角三角形设,,线段的中点为由,消去可得:,解得:∴,,依题意有,由可得:,可得:由可得:,代入上式化简可得:则:,解得:当时,点满足题意;当时,点满足题意故轴上存在点,使得是以为直角顶点的等腰直角三角形【点睛】本题考查了椭圆的方程,直线和椭圆的位置关系,斜率公式,考查了运算能力和转化能力,属于中档题.20、(1)B(2)【解析】
(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冬季施工暖棚搭设方案
- 人教版九年级化学上册自制第六单元课题4实验活动2-二氧化碳实验室制取与性质(34张)
- 2019-2020学年高中数学第2章解析几何初步2-3空间直角坐标系课件北师大版必修2
- 接待礼仪-素材-培训讲学
- 教育学原理04-近现代高等教育发展、教师
- 2024年泰州职业技术学院高职单招数学历年参考题库含答案解析
- 2024年阳江市卫校附属医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 二零二五年离婚房产分割与赡养义务协议3篇
- 二零二五版“汽车零部件销售协议”英文翻译
- 2024年江西医学高等专科学校高职单招职业技能测验历年参考题库(频考版)含答案解析
- 小动物疾病-第一章 小动物疾病概述
- 电动车转让协议书电子版
- 蔬菜大棚温度控制系统设计毕业设计论文
- 骨科临床路径全集(范本模板)
- 破产申请异议书
- 金蝶云星辰初级考试题库
- 常见老年慢性病防治与护理课件整理
- 履约情况证明(共6篇)
- 云南省迪庆藏族自治州各县区乡镇行政村村庄村名居民村民委员会明细
- 设备机房出入登记表
- 六年级语文-文言文阅读训练题50篇-含答案
评论
0/150
提交评论