版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区第十三中学2024年高三二模数学试题解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为()A. B. C. D.2.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.3.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A. B. C. D.4.已知数列的前n项和为,,且对于任意,满足,则()A. B. C. D.5.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.6.在直角中,,,,若,则()A. B. C. D.7.已知集合,则()A. B. C. D.8.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.9.已知向量与向量平行,,且,则()A. B.C. D.10.已知函数,则下列判断错误的是()A.的最小正周期为 B.的值域为C.的图象关于直线对称 D.的图象关于点对称11.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()A. B. C. D.12.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.已知等差数列满足,,则的值为________.15.若幂函数的图象经过点,则其单调递减区间为_______.16.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.18.(12分)已知函数.(1)求不等式的解集;(2)若函数的定义域为,求实数的取值范围.19.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围20.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.21.(12分)已知椭圆()经过点,离心率为,、、为椭圆上不同的三点,且满足,为坐标原点.(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围.22.(10分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值.【详解】可设的内切圆的圆心为,为切点,且为中点,,设,,则,且有,解得,,设,,设圆切于点,则,,由,解得,,,所以为等边三角形,所以,,解得.因此,该椭圆的离心率为.故选:D.【点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题.2、C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.3、D【解析】
做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.4、D【解析】
利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.【详解】当时,.所以数列从第2项起为等差数列,,所以,,.,,.故选:.【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.5、B【解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.6、C【解析】
在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【详解】在直角中,,,,,
,
若,则故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.7、A【解析】
考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.8、B【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.9、B【解析】
设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.10、D【解析】
先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.11、A【解析】
首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个,具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1____,__1__,____1.剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个.故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题12、D【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.14、11【解析】
由等差数列的下标和性质可得,由即可求出公差,即可求解;【详解】解:设等差数列的公差为,,又因为,解得故答案为:【点睛】本题考查等差数列的通项公式及等差数列的性质的应用,属于基础题.15、【解析】
利用待定系数法求出幂函数的解析式,再求出的单调递减区间.【详解】解:幂函数的图象经过点,则,解得;所以,其中;所以的单调递减区间为.故答案为:.【点睛】本题考查了幂函数的图象与性质的应用问题,属于基础题.16、【解析】
直接计算,可得结果.【详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,期望为.【解析】
(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望.【详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,∴;(2)的所有可能值分别为,,,,,∴的分布列为:0123【点睛】本题考查古典概型,考查随机变量的概率分布列和数学期望.解题关键是掌握相互独立事件同时发生的概率计算公式.18、(1)(2)【解析】
(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可.(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案.【详解】(1)不等式或或,解得或,即x>0,所以原不等式的解集为.(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即.所以实数a的取值范围是.【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题.19、(1).(2).【解析】试题分析:(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到关于a的不等式,解出即可.试题解析:(1)不等式等价于或或,解得或,所以不等式的解集是;(2),,,解得实数的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.20、(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)证明见解析;(2).【解析】
(1)首先根据题中条件求出椭圆方程,设、、点坐标,根据利用坐标表示出即可得证;(2)设直线方程,再与椭圆方程联立利用韦达定理表示出,即可求出范围.【详解】(1)依题有,所以椭圆方程为.设,,,由为的重心,;又因为,,,,(2)当的斜率不存在时:,,,代入椭圆得,,,当的斜率存在时:设直线为,这里,由,,根据韦达定理有,,,故,代入椭圆方程有,又因为,综上,的范围是.【点睛】本题主要考查了椭圆方程的求解,三角形重心的坐标关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年福州市劳动协议格式
- 安保岗位聘用协议范本2024年限定
- 2024事业单位劳动协议定制样本
- 2024年不变单价服务协议格式
- 2024年债务以资抵债协议样本
- 2024房产中介服务协议模板
- DB11∕T 1671-2019 户用并网光伏发电系统电气安全设计技术要求
- 2024高效货车驾驶员专属聘请协议
- 二手电动摩托车交易协议2024年
- 2024年借款融资居间协议格式
- 中小学119消防宣传月活动方案3篇
- 中汇富能排矸场设计
- 2024年保安员证考试题库及答案(共160题)
- 江苏省苏州市市区2023-2024学年五年级上学期期中数学试卷
- 2024年大学试题(财经商贸)-统计预测与决策考试近5年真题集锦(频考类试题)带答案
- 主要负责人和安全生产管理人员安全培训课件初训修订版
- 人教版2024新版八年级全一册信息技术第1课 开启物联网之门 教学设计
- 2024220kV 预制舱式模块化海上风电升压站
- 2024秋期国家开放大学《国家开放大学学习指南》一平台在线形考(任务一)试题及答案
- 2024年新人教版道德与法治一年级上册 9 作息有规律 教学课件
- 2024新人教版道法一年级上册第二单元:过好校园生活大单元整体教学设计
评论
0/150
提交评论