下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE16.2排列与组合6.2.1排列课标要求素养要求1.通过实例理解排列的概念.2.能应用排列知识解决简单的实际问题.通过学习排列的概念,进一步提升数学抽象及逻辑推理素养.自主梳理排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.排列定义中两层含义:一是“取出元素”,二是“按照一定的顺序排成一列”.自主检验1.思考辨析,判断正误(1)在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)〖提示〗在一个排列中,若交换两个元素的位置,则该排列与原来的排列不同.(2)两个排列相同的充要条件是:两个排列的元素完全相同,且元素的排列顺序也相同.(√)(3)从1,2,3,4中任选两个元素,就组成一个排列.(×)〖提示〗从1,2,3,4中任选两个元素并按照一定的顺序排成一列,才能组成一个排列.(4)从5个同学中任选2个同学分别参加数学和物理竞赛的所有不同的选法是一个排列问题.(√)2.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题()A.1种 B.3种C.2种 D.4种〖答案〗C〖解析〗因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题,而减法、除法与两数字的位置有关,故是排列问题.3.从甲、乙、丙三人中选两人站成一排的所有站法为()A.甲乙,乙甲,甲丙,丙甲B.甲乙丙,乙丙甲C.甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D.甲乙,甲丙,乙丙〖答案〗C〖解析〗选出两人,且两人的不同顺序都要考虑.4.从5名同学中选出正、副组长各1名,有__________种不同的选法(用数字作答).〖答案〗20〖解析〗从5名同学中选出正、副组长各1名,即从5个不同元素中选出2个元素进行排列,不同的选法种数为5×4=20.题型一排列的概念〖例1〗判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3),(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长与当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2),(5),(6)属于排列问题.思维升华判断一个具体问题是否为排列问题的方法〖训练1〗下列问题是排列问题吗?(1)从班上50名学生中选出6人去参加数学竞赛;(2)从数字5,6,7,8中任取两个不同的数字作幂运算;(3)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排3位客人入座,又有多少种方法?解(1)不是;(2)是;(3)第一问不是,第二问是.理由:(1)不存在顺序问题;(2)进行幂运算时,两数谁作底数,谁作指数不一样,此时与位置有关;(3)选出3个座位与顺序无关,“入座”问题同“排队”,与顺序有关,故选3个座位安排3位客人入座是排列问题.题型二排列的列举问题〖例2〗(1)从1,2,3,4四个数字中任取两个数字组成无重复数字的两位数,一共可以组成多少个?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.解(1)由题意作“树状图”,如下.故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作“树状图”,如下.故所有的排列为abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.思维升华利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.〖训练2〗写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能站法.解由题意作“树状图”,如下,故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB,CBAD,CDAB,DABC,DACB,DBAC,DCAB.题型三排列的简单应用〖例3〗用具体数字表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名实习生,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解(1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其商共有100×99=9900(个).(2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,共有3×2×1=6(个).(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,共有5×4×3×2=120(个)分配方案.思维升华要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.〖训练3〗(1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解(1)从7本不同的书中选3本送给3名同学,相当于从7个不同元素中任取3个元素的一个排列,所以共有7×6×5=210(种)不同的送法.(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理知,共有7×7×7=343(种)不同的送法.1.牢记2个知识点(1)排列的定义;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据保护守则3篇
- 安装工程合同的工程变更申请3篇
- 工业电暖设备采购招标3篇
- 推广活动服务合同3篇
- 新版实验室员工保密协议3篇
- 推广活动采购协议3篇
- 房屋买卖合同贷款的房产登记问题3篇
- 安全骑行电动车的决心3篇
- 安徽新版离婚协议书格式3篇
- 排水沟承包合同范本两份3篇
- 课件 军人职责
- Unit 5 Fun ClubsSectionA1a-1d说课稿2024-2025学年人教版英语七年级上册
- 2025蛇年元旦晚会
- 电工的职业健康培训
- 《预防性侵害讲座》课件
- 2024年中国船舶涂料市场调查研究报告
- 竣工验收备案表-昆明市
- 2024年湖南省衡阳市人民检察院招聘21人历年高频难、易错点500题模拟试题附带答案详解
- 企业所得税收入确认
- 2025年高考化学一轮复习策略讲座
- 期末 (试题) -2024-2025学年教科版(广州)英语四年级上册
评论
0/150
提交评论