版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page11页,共=sectionpages33页专题11.13三角形中的几个重要几何模型(专项练习)一、单选题1.如图,在由线段组成的平面图形中,,则的度数为(
).A. B. C. D.2.如图,已知在中,,现将一块直角三角板放在上,使三角板的两条直角边分别经过点,直角顶点D落在的内部,则(
).A. B. C. D.3.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240° B.280° C.360° D.540°4.如图,在中,,与的角平分线交于,与的角平分线交于点,依此类推,与的角平分线交于点,则的度数是(
)A. B. C. D.5.如图所示,∠A+∠B+∠C+∠D+∠E的结果为(
)A.90° B.360° C.180° D.无法确定6.如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115° B.120° C.125° D.130°7.如图,,的角平分线交于点,若,,则的度数(
)A. B. C. D.8.如图,平分,平分,与交于点,若,,则(
)A.80° B.75° C.60° D.45°9.如图,△ABC中,∠E=18°,BE平分∠ABC,CE平分∠ACD,则∠A等于()A.36° B.30° C.20° D.18°10.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是(
)A.∠1+∠0=∠A+∠2 B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360° D.∠1+∠2+∠A=∠O二、填空题11.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=.12.如图,则的度数是.
13.如图,若,则.14.如图,在中,、分别平分,,的延长线交外角的角平分线于点.以下结论:①;②;③;④.其中正确的结论有(填序号).15.如图,在中,,与的平分线交于点,得;与的平分线相交于点,得;;与的平分线相交于点,得,则.16.如图,五边形在处的外角分别是分别平分和且相交于点P.若,则.17.如图,已知的两条高、交于点,的平分线与外角的平分线交于点,若,则.18.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=.三、解答题19.如图所示,,且,求和的度数.
20.如图,中,(1)若、的三等分线交于点、,请用表示、;(2)若、的等分线交于点、(、依次从下到上),请用表示,.21.如图,已知、的平分线相交于点,过点且.
(1)若,,求的度数;(2)若,,求、的度数.22.(1)如图所示,在中,分别是和的平分线,证明:.(2)如图所示,的外角平分线和相交于点D,证明:.(3)如图所示,的内角平分线和外角平分线相交于点D,证明:.23.(1)已知:如图①的图形我们把它称为“字形”,试说明:.(2)如图②,,分别平分,,若,,求的度数.(3)如图(3),直线平分,平分的外角,猜想与、的数量关系是________;(4)如图(4),直线平分的外角,平分的外角,猜想与、的数量关系是________.24.(1)已知:如图①的图形我们把它称为“8字形”,试说明:.(2)如图②,分别平分,若,求的度数.(3)如图③,直线平分的外角平分的外角,若,则________用的代数式表示)25.(1)问题发现:如图1,在中,,和的平分线交于,则的度数是______(2)类比探究:如图2,在中,的平分线和的外角的角平分线交于,则与的关系是______,并说明理由.(3)类比延伸:如图3,在中,外角的角平分线和的外角的角平分线交于,请直接写出与的关系是______.
26.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;【简单应用】(2)如图2,AP、CP分别平分∠BAD.∠BCD,若∠ABC=46°,∠ADC=26°,求∠P的度数;【问题探究】(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.【拓展延伸】(4)①在图4中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为:(用α、β表示∠P);②在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论.
参考答案:1.C【分析】如图标记,然后利用三角形的外角性质得,,再利用互为邻补角,即可得答案.【详解】解:如下图标记,,,,又,,,,故选C.【点拨】此题考查了三角形的外角性质与邻补角的意义,熟练掌握并灵活运用三角形的外角性质与邻补角的意义是解答此题的关键.2.C【分析】由三角形内角和定理可得∠ABC+∠ACB+∠A=180°,即∠ABC+∠ACB=180-∠A=140°,再说明∠DBC+∠DCB=90°,进而完成解答.【详解】解:∵在△ABC中,∠A=40°∴∠ABC+∠ACB=180-∠A=140°∵在△DBC中,∠BDC=90°∴∠DBC+∠DCB=180°-90°=90°∴40°-90°=50°故选C.【点拨】本题主要考查三角形内角和定理,灵活运用三角形内角和定理成为解答本题的关键.3.A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.【点拨】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.4.B【分析】根据题意可得∠ABC+∠ACB=160°,BD1,CD1,CD2,BD2…BDn,CDn是角平分线,可得∠ABDn+∠ACDn=160×()n,可求∠BCDn+∠CBDn的值,再根据三角形内角和定理可求结果.【详解】解:∵∠A=20°,∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=160°,∵BD1平分∠ABC,CD1平分∠ACB,∴∠ABD1=∠ABC,∠ACD1=∠ACD,∵BD2平分∠ABD1,CD2平分∠ACD1,∴∠ABD2=∠ABD1=∠ABC,∠ACD2=∠ACD1=∠ACB,同理可得∠ABD5=∠ABC,∠ACD5=∠ACB,∴∠ABD5+∠ACD5=160×=5°,∴∠BCD5+∠CBD5=155°,∴∠BD5C=180-∠BCD5-∠CBD5=25°,故选B.【点拨】本题考查了三角形内角和定理,角平分线,关键是找出其中的规律,利用规律解决问题.5.C【详解】如图,连接BC,∵∠D+∠E+∠DOE=∠BOC+∠OCB+∠BOC=180°,∠DOE=∠BOC,∴∠D+∠E=∠OBC+∠OCB,又∵∠A+∠ABO+∠ACO+∠OBC+∠OCB=180°,∴∠A+∠ABO+∠ACO+∠D+∠E=180°.故选:C.6.D【详解】∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°-50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.7.A【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根据三角形的外角性质得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD−∠D,根据PB、PC是角平分线得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A−∠D,代入即可求出∠P.法二:延长DC,与AB交于点E.设AC与BP相交于O,则∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入计算即可.【详解】解:法一:延长PC交BD于E,设AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD−∠D,∴∠P+∠PBE=∠PCD−∠D,∴2∠P+∠PCF+∠PBE=∠A−∠D+∠ABF+∠PCD,∵PB、PC是角平分线∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A−∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD−∠ABD=58°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°−(∠ACD−∠ABD)=19°.故选A.【点拨】本题主要考查对三角形的内角和定理,三角形的外角性质,对顶角的性质,角平分线的性质等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键.8.C【分析】连接先求解再求解可得再利用角平分线的定义可得:从而可得:再利用三角形的内角和定理可得的大小.【详解】解:连接平分,平分,故选:【点拨】本题考查的是三角形的内角和定理的应用,角平分线的定义,熟练利用三角形的内角和定理求解与之相关的角的大小是解题的关键.9.A【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系,即可得到结论.【详解】解:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A=18°,∴∠A=36°.故选A.10.D【分析】连接AO并延长,交BC于点D,由三角形外角的性质可知∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2,再把两式相加即可得出结论.【详解】解:连接AO并延长,交BC于点D,∵∠BOD是△AOB的外角,∠COD是△AOC的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD)+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选:D.【点拨】本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.11.900°【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图,∵6边形ABCDEFK的内角和=(6-2)×180°=720°,∴∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∴∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∴∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点拨】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).12./180度【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得,,然后利用三角形的内角和定理即可得解.【详解】解:如图,
∵是的外角,是的外角,∴,,又∵,∴.故答案为:.【点拨】本题考查三角形外角的性质,三角形的内角和定理.三角形的一个外角等于与它不相邻的两个内角的和.熟记性质并准确识图是解题的关键.13.230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∴∠E+∠D+∠C=115°,∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∴∠A+∠B+∠F=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点拨】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.14.①③/③①【分析】依据角平分线的性质以及三角形外角性质,即可得到,,,即可得出答案.【详解】解:∵为外角的平分线,平分,∴,又∵是的外角,∴,即,故①正确;∵、分别平分,,∴,∴,故④错误;∵平分,平分,∴,∴,∵是的外角,∴,故②错误、③正确;综上,正确的有①③.故答案为:①③.【点拨】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及角平分线的定义.15.【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得,同理得;再根据数字规律的性质分析,即可得到答案.【详解】根据题意,,与的平分线交于点∴∵∴∵∴同理,得;;;…∴故答案为:.【点拨】本题考查了三角形和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.16.105°【分析】根据多边形内角和公式求出五边形的内角和,根据题意求出∠BCD+∠CDE的度数,从而求出∠PCD+∠PDC的度数,运用三角形内角和定理即可求出∠CPD的度数.【详解】解:∵∠A=160°,∠B=80°,∠E=90°,∴∠BCD+∠CDE=(5−2)×180°−160°−80°−90°=210°,∴∠PCD+∠PDC=(180°×2−210°)=75°,在△CPD中,∠CPD=180°−(∠PCD+∠PDC)=180°−75°=105°,故答案为:105°.【点拨】本题主要考查多边形内角和公式,三角形内角和定理,以及外角的平分线,根据已知条件求出∠BCD+∠CDE的度数是解题的关键.17.36【分析】首先根据三角形的外交性质求出,结合三角形的高的知识得到和之间的关系,进而可得结果;【详解】由图知:,∵是的角平分线,∴,∴,∵是的角平分线,∴,∴,即,∴,∴,∴,∵的两条高、交于点,∴,,∴,∴在四边形中有:,∵,∴,∵,∴,∴.故答案为:36.【点拨】本题主要考查了与角平分线有关的三角形的内角和与外角性质,准确分析计算是解题的关键.18.36°【分析】由角平分线的定义得∠NCM=∠MBN=×180°=90°,再比的关系可求得∠CMB=108°,再由内角平分线及三角形内角和即可求得结果.【详解】由题意得:∠NCM=∠MBN=×180°=90°,∴∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°-∠CMB=72°,∴∠ACB+∠ABC=144°,∴∠CAB=180°-(∠ACB+∠ABC)=36°.【点拨】本题考查了三角形内角和定理、三角形角平分线的定义等知识,由条件得到∠NCM=∠MBN=90°是关键.19.【分析】本题主要考查三角形全等的性质,找到相应等量关系的角是解题的关键,做题时要结合图形进行思考.由,可得,根据三角形外角性质可得,可得的度数;根据三角形内角和定理可得,即可得的度数.【详解】解:∵,∴,,,∴,在中,.20.(1),,(2),【分析】(1)根据三角形的内角和定理可得,再由、的三等分线交于点、,可得再根据三角形的内角和定理,即可求解;(2)根据三角形的内角和定理可得,再由、的等分线交于点、,可得再根据三角形的内角和定理,即可求解.【详解】(1)解:∵,∴,∵、的三等分线交于点、,∴∴,;(2)解:∵,∴,∵、的等分线交于点、,∴∴,.【点拨】本题主要考查了有关角平分线三角形的内角和问题,熟练掌握三角形的内角和定理,并利用类比思想解答是解题的关键.21.(1)125°
(2)60°;40°【分析】(1)由角平分线的定义可求得∠OBC=25°,∠OCB=30°,再利用三角形的内角和定理求解即可;(2)由已知条件易求∠1,∠2的度数,根据平行线的性质即可得∠OBC,∠OCB的度数,利用角平分线的定义可求解;【详解】解:(1)∵和的平分线与相交于点,∴,,又,,∴,,∴;(2)∵,∴,∵,∴,,∵,∴,,∵和的平分线与相交于点,∴,.【点拨】本题主要考查角平分线的定义,三角形的内角和定理,平行线的性质,等腰三角形的性质等知识点的综合运用.22.(1)见解析;(2)见解析;(3)见解析【详解】(1)设.由的内角和为,得.①由的内角和为,得.②由②得.③把③代入①,得,即,即(2)∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴由三角形内角和定理得,,=180°-[∠A+(∠A+∠ABC+∠ACB)],=180°-(∠A+180°),=90°-∠A;(3)如图:∵BD为△ABC的角平分线,交AC与点E,CD为△ABC外角∠ACE的平分线,两角平分线交于点D∴∠1=∠2,∠5=(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180°-∠1-∠3∴∠1+∠3=180°-∠A①在△CDE中,∠D=180°-∠4-∠5=180°-∠3-(∠A+2∠1),即2∠D=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A②,把①代入②得∠D=∠A.【点拨】此题考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学常规题.23.(1)见解析;(2)26°;(3);(4)【分析】(1)根据三角形的内角和等于180°和对顶角的性质即可得证;(2)设,,解方程即可得到答案;(3)根据直线平分,平分的外角,得到,从而可以得到180°,再根据∠P+∠PAD=∠PCD+∠D,∠BAD+∠B=∠BCD+∠D得到即可求解;(4)连接PB,PD根据180°,180°得到360°,同理得到:360°,再根据180°,180°,,,即可求解.【详解】解:(1)180°,180°,.,;(2),分别平分,,设,,则有,,(36°+16°)=26°(3)直线平分,平分的外角,,,∴180°-,∴180°∵∠P+∠PAD=∠PCD+∠D,∠BAD+∠B=∠BCD+∠D∴∴∴180°,即90°.(4)连接PB,PD直线平分的外角,平分的外角,,,∵180°,180°∴360°同理得到:360°∴720°∴720°∵180°,180°∴360°,180°-【点拨】本题主要考查了角平分线的定义,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)证明见解析;(2);(3).【分析】(1)根据三角形的内角和等于180°列式整理即可得证;(2)设∠BAP=∠PAD=x,∠BCP=∠PCD=y,利用(1)中结论,构建方程组即可解决问题;(3)表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解.【详解】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)∵分别平分,设∠BAP=∠PAD=x,∠BCP=∠PCD=y,则有,∴∠ABC-∠P=∠P-∠ADC,∴;(3)如图,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2=180°-∠1,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠ADC+(180°-∠3),∠P+∠1=∠ABC+∠4,∴2∠P=∠ABC+∠ADC,∵,∴.【点拨】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.25.(1)110°;(2);(3)【分析】(1)根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线的定义、三角形内角和定理计算即可;(2)根据三角形外角的性质得到∠ACE=∠ABC+∠A、∠PCE=∠PBC+∠BPC,根据角平分线的定义解答;(3)根据(1)的结论然后用角分线的定义,计算即可.【详解】解:(1)∵,∴,∵和的平分线交于,∴,,∴故答案为110°(2),证明:∵是的外角,是的外角,∴,∵平分,平分,∴,∴,∴,∴,故答案为:;(3)由(1)得,,故答案为:.【点拨】本题考查的是三角形内角和定理的应用以及角平分线的定义,掌握三角形内角和等于180°和三角形外角性质是解题的关键.26.(1)见解析;(2)36°;(3)26°,理由见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规模拟考试试卷A卷含答案
- 中国消费者食品添加剂认知调查报告 2023
- 2024年数控高精度内外圆磨床项目资金申请报告代可行性研究报告
- 2024年xx村10月驻村工作总结
- 二年级数学(上)计算题专项练习
- 2024年度影视制作费用协议范本
- 第七届进博会隆重开幕感悟心得
- 2024年商业广告承揽协议规范格式
- 2024年产蜜蜂购买协议
- 2024年零星建筑施工项目协议范本
- 采购主管岗位招聘笔试题与参考答案(某大型国企)2024年
- 短视频运营及带货逻辑课件
- 2024年中国陶茶具市场调查研究报告
- 2022年江苏省普通高中学业水平测试生物试卷
- 第4章 跨境电商选品与定价
- 《介绍教室》(教案)-2024-2025学年一年级上册数学北师大版
- 2024年检察院招录书记员考试法律基础知识及答案
- 《犯罪心理学(马皑第3版)》章后复习思考题及答案
- 青骄第二课堂2021年禁毒知识答题期末考试答案(初中组)
- 2024-2030年中国射频芯片行业市场发展趋势与前景展望战略分析报告
- 华电线上测评
评论
0/150
提交评论