版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京丰台区北京第十二中学2024届高三数学试题下学期一模预考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则()A. B. C. D.2.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为()A.12 B. C. D.3.已知集合,,则A. B.C. D.4.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.5.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.6.已知,,,则,,的大小关系为()A. B. C. D.7.在中,“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知函数为奇函数,且,则()A.2 B.5 C.1 D.39.已知实数、满足不等式组,则的最大值为()A. B. C. D.10.已知函数,若,则的最小值为()参考数据:A. B. C. D.11.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.6312.若函数的图象如图所示,则的解析式可能是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺).15.若实数,满足,则的最小值为__________.16.如果抛物线上一点到准线的距离是6,那么______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且,.(1)求的值;(2)若求的面积.18.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.19.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,α为直线的倾斜角).(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角α的大小.20.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.21.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,,即,,由函数的单调区间知,,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.2、C【解析】
过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【详解】在和中,,所以,则,过作于,连接,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.【点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.3、D【解析】
因为,,所以,,故选D.4、B【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.5、B【解析】
画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.6、D【解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.7、C【解析】
由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区间上单调递减,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.8、B【解析】
由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.9、A【解析】
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10、A【解析】
首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,,令,解得,所以,且,化简得,所以,构造函数,.构造函数,,所以在区间上递减,而,,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A【点睛】本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方法,属于难题.11、B【解析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.12、A【解析】
由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.14、213892【解析】
根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【详解】如图所示:正四棱锥P-ABCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺,所以,解得,所以该正四棱台的体积是,故答案为:21;3892.【点睛】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题.15、【解析】
由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.【点睛】本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.16、【解析】
先求出抛物线的准线方程,然后根据点到准线的距离为6,列出,直接求出结果.【详解】抛物线的准线方程为,由题意得,解得.∵点在抛物线上,∴,∴,故答案为:.【点睛】本小题主要考查抛物线的定义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3(2)78【解析】试题分析:(1)由两角和差公式得到,由三角形中的数值关系得到,进而求得数值;(2)由三角形的三个角的关系得到,再由正弦定理得到b=15,故面积公式为.解析:(1)在中,由,得为锐角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面积.18、(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由题,得,,解方程组,即可得到本题答案;(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】(Ⅰ)由题可得,即,,将点代入方程得,即,解得,所以椭圆的方程为:;(Ⅱ)由(Ⅰ)知,设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以.【点睛】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.19、(1)当时,直线l方程为x=-1;当时,直线l方程为y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.【详解】(1)当时,直线l的普通方程为x=-1;当时,消去参数得直线l的普通方程为y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即为曲线C的直角坐标方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直线l的倾斜角α为或.【点睛】本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.20、(1),(2)【解析】
(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.21、(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区养老照护协议
- 个性婚庆策划方案
- 招标文件承诺书的编写规范
- 品质保障书声明
- 员工安全生产承诺声明
- 供应与服务合同手册
- 计算机软件技术外包合同案例
- 电子购销合同的税务筹划
- 气体灭火工程招标诚邀您的参与
- 外派工作保证书
- 触式橄榄球智慧树知到期末考试答案2024年
- 设备管理中的主要问题和挑战
- 2024年广东开放大学《汽车电器设备构造与检修》形成性考核参考试题库(含答案)
- 电路分析试题及答案(大学期末考试题)
- 艺术景观专业职业生涯发展报告
- 棋牌室加盟方案
- 辽宁经济职业技术学院单招《语文》考试复习题库(含答案)
- 水工艺设备基础全套课件
- HGT 2520-2023 工业亚磷酸 (正式版)
- 跨文化人工智能伦理比较
- 外委单位安全培训
评论
0/150
提交评论