版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次函数复习课(浙教版)一次函数复习课(浙教版)一次函数复习课(浙教版)#PAGE#一次函数复习课(浙教版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一次函数复习课(浙教版))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为一次函数复习课(浙教版)的全部内容。一次函数考点1一次函数与正比例函数的概念一次函数一般地,如果①(k、b是常数,k≠0),那么y叫做x的一次函数.正比例函数特别地,当②时,y=kx+b变为③(k是常数,k≠0),这时y叫做x的正比例函数。考点2一次函数的图象一次函数的图象一次函数y=kx+b的图象是经过点(0,④)和(⑤,0)的一条⑥。特别地,正比例函数y=kx的图象是经过点(0,⑦)和(1,⑧)的一条⑨.直线y=kx+b与y=kx之间的关系直线y=kx+b可以看成是由直线y=kx平移得到,b>0,向⑩平移⑪个单位;b<0,向⑫平移⑬个单位.考点3一次函数y=kx+b的性质【易错提示】一次函数图象不经过第二象限是指图象经过第一、三、四象限或第一、三象限.k、b符号图象形状经过的象限函数的性质k>0,b>0⑭y随x的增大而⑯.k>0,b<0⑮k<0,b>0eq\o\ac(○,17)y随x的增大而eq\o\ac(○,19).k<0,b<0eq\o\ac(○,18)考点4确定一次函数的解析式【易错提示】在已知自变量和函数的取值范围确定函数解析式时,要注意函数性质的影响,防止漏解.常用方法eq\o\ac(○,20)步骤①设函数eq\o\ac(○,21);②列方程(组);③解方程(组)确定待定系数;④确定解析式。常见类型①已知两点坐标确定解析式;②已知两对函数对应值确定解析式;③通过平移规律确定函数解析式。考点5一次函数与方程、不等式的关系一次函数与一次方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与eq\o\ac(○,22)轴交点的eq\o\ac(○,23)坐标。一次函数与一元一次不等式一元一次不等式kx+b>0(或kx+b<0)(k≠0)的解集可以看作一次函数y=kx+b取eq\o\ac(○,24)值(或eq\o\ac(○,25)值)时自变量x的取值范围。一次函数与方程组两直线的交点坐标是两个一次函数解析式y=k1x+b1和y=k2x+b2所组成的关于x、y的方程组eq\o\ac(○,26)的解.考点6一次函数的实际应用建模思想确定实际问题中的一次函数解析式,要先将实际问题转化为数学问题,即数学建模。要做到这种转化,首先要分清哪个量是自变量,哪个量是函数;其次建立eq\o\ac(○,27)与eq\o\ac(○,28)之间的关系,要注意eq\o\ac(○,29).实际问题中一次函数的性质在实际问题中,可以根据自变量的取值求eq\o\ac(○,30),或者由eq\o\ac(○,31)求自变量的值.由于自变量的取值范围一般受到限制,所以可以根据一次函数的性质求出函数在某个范围的最值.【易错提示】分段函数中,拐点的坐标同时在前后两个图象上.1。比较两个一次函数函数值的大小,可以借助一次函数的性质,也可以借助函数图象,利用数形结合思想进行比较。2.利用函数图象解决实际问题时,要注意仔细分析图象中各点的含义,尤其是图象与图象或坐标轴的交点,要善于运用数形结合思想从图象中获取有用的信息。3。利用一次函数解决调配问题时,首先可以利用图示法或表格法表示出各个变量,从而确定所求费用等信息的一次函数表达式,运用一次函数的性质分析问题得出正确的选择。命题点1一次函数的图象和性质例1(2013·大庆)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(—1,3)B。它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大方法归纳:解答这类题的关键是熟练掌握一次函数的图象和性质以及数形结合的数学思想方法.1.(2014·重庆B卷)若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是()A.5B.4C.3D.12.(2014·东营)直线y=—x+1经过的象限是()A。第一、二、三象限B.第一、二、四象限C。第二、三、四象限D。第一、三、四象限3.(2014·邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A。a>bB.a=bC。a<bD.以上都不对4。(2014·河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m—2)x+n,则m的取值范围在数轴上表示为()5。(2013·盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)命题点2确定一次函数的解析式例2(2013·包头)如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴,y轴分别交于点C,D.若DB=DC,求直线CD的函数解析式。【思路点拨】先依据A,B两点的坐标,运用待定系数法求出直线AB的解析式,直线CD是由直线AB向左平移得到的,只要利用等腰三角形的性质求出平移的距离BC的长即可。【解答】方法归纳:求直线解析式平移后的解析式时,关键要抓住“自变量增减左右移,函数值增减上下移”。1。(2014·宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3B。y=x—3C.y=2x—3D.y=-x+32。已知两个变量x和y,它们之间的3组对应值如下表所示:x—101y-113则y与x之间的函数关系式可能是()A.y=xB。y=2x+1C。y=x2+x+1D。y=EMBEDEquation.DSMT43。(2014·泰州)直线y=3x—1沿y轴向上平移3个单位后,得到的图象对应的函数关系式为。4。(2014·武汉)已知直线y=2x—b经过点(1,—1),求关于x的不等式2x-b≥0的解集。命题点3一次函数与方程、不等式的关系例3(2013·南通)如图,经过点B(—2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,—2),则不等式4x+2<kx+b<0的解集为.方法归纳:解答这类题时,一要明确一次函数、一次方程和一元一次不等式的内在联系;二是在观察图象时,特别注意直线与x轴的交点以及两直线的交点。三要做到数形结合.这类题目中自变量的取值通常在给定的两个点的横坐标之间。1。用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A。EMBEDEquation.DSMT4B。EMBEDEquation.DSMT4C.EMBEDEquation.DSMT4D.EMBEDEquation.DSMT42。(2013·娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B。x>0C。x<2D.x>23。(2014·毕节)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥EMBEDEquation.DSMT4B.x≤3C.x≤EMBEDEquation.DSMT4D.x≥34.(2014·鄂州)如图,直线y=kx+b过A(-1,2)、B(-2,0)两点,则0≤kx+b≤—2x的解集为。命题点4一次函数的实际应用例4(2014·维吾尔自治区)如图1所示,在A、B两地之间有汽车站C站,客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶,图2是客车、货车离C站的路程y1、y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A、B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式。(3)客、货两车何时相遇?【思路点拨】(1)根据图象得到A、B两地之间的距离;(2)根据D点坐标,得出货车的运动速度,从而得出点P的坐标,然后求直线DP的解析式;(3)根据图象求出直线EF的解析式,两直线联立成方程组,从而求出相遇的时间.【解答】方法归纳:利用函数的图象解决实际问题的关键是必须正确理解函数图象横、纵坐标表示的意义。另外,也有些题是从现实情景中提取信息、分析数据、建立数学模型.1.(2014·武汉)一次越野赛中,当小明跑了1600米时,小刚跑了1400米,小明、小刚此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米。2.(2014·上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系。现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2…8.29。8体温计的读数y(℃)35.0…40.042。0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.3.(2013·遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元。经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费。另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人。(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.第1课时基础训练1.下列函数中是正比例函数的是()A.y=-8xB。y=-EMBEDEquation.DSMT4C.y=5x2+6D。y=—0.5x—12。(2014·陕西)若点A(-2,m)在正比例函数y=-EMBEDEquation.DSMT4x的图象上,则m的值是()A.EMBEDEquation.DSMT4B.—EMBEDEquation.DSMT4C.1D。—13.(2014·资阳)一次函数y=—2x+1的图象不经过下列哪个象限()A。第一象限B.第二象限C.第三象限D.第四象限4。如图,如果一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组EMBEDEquation.DSMT4的解是()A。EMBEDEquation.DSMT4B。EMBEDEquation.DSMT4C.EMBEDEquation.DSMT4D.EMBEDEquation.DSMT45。(2014·枣庄)将一次函数y=EMBEDEquation.DSMT4x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A。x>4B。x>—4C.x>2D。x>-26.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米B.12厘米C。24厘米D。36厘米7。(2014·泸州)“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A。2小时B。2。2小时C.2。25小时D.2.4小时8.(2014·黔西南)甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒,在跑步的过程中,甲乙两人之间的距离y(m)与乙出发的时间t(s)之间的函数关系如图所示,给出以下结论:①a=8,②b=92,③c=123,其中正确的是()A.①②③B.仅有①②C。仅有①③D.仅有②③9.(2014·云南)写出一个图象经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):。10.(2014·广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为。11。已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.12。为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2。6元收费.设某用户月用水量x吨,自来水公司的应收水费为y元.(1)试写出y(元)与x(吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?13。(2014·湖南)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系。根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间。第2课时能力训练1。(2014·巴中)已知直线y=mx+n,其中m、n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B。第一、二、三象限C.第一、三、四象限D。第一、二、四象限2.(2013·娄底模拟)关于x的一次函数y=kx+k2+1的图象可能是()3。(2014·江西)直线y=x+1与y=—2x+a的交点在第一象限,则a的取值可以是()A.—1B。0C。1D.24.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A。(0,0)B.(EMBEDEquation.DSMT4,—EMBEDEquation.DSMT4)C。(-EMBEDEquation.DSMT4,—EMBEDEquation.DSMT4)D。(—EMBEDEquation.DSMT4,—EMBEDEquation.DSMT4)5.(2014·株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(—2,0),且两直线与y轴围成的三角形面积为4,那么b1—b2等于。6。(2014·自贡)一次函数y=kx+b,当3≤x≤4时,3≤y≤6,则EMBEDEquation.DSMT4的值是。7。“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0。5x(0≤x≤5)。”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:(只需写出1个).8.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B。(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求△ABP的面积.9。(2014·烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格200010。(2013·荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均住房面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.11.(2013·黄石)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为s千米,请写出s关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.参考答案考点解读①y=kx+b②b=0③y=kx④b⑤-EMBEDEquation.DSMT4⑥直线⑦0⑧k⑨直线⑩上⑪b⑫下⑬|b|⑭一、二、三⑮一、三、四⑯增大eq\o\ac(○,17)一、二、四eq\o\ac(○,18)二、三、四eq\o\ac(○,19)减小eq\o\ac(○,20)待定系数法eq\o\ac(○,21)解析式eq\o\ac(○,22)xeq\o\ac(○,23)横eq\o\ac(○,24)正eq\o\ac(○,25)负eq\o\ac(○,26)EMBEDEquation.DSMT4eq\o\ac(○,27)函数eq\o\ac(○,28)自变量eq\o\ac(○,29)自变量的取值范围eq\o\ac(○,30)函数eq\o\ac(○,31)函数各个击破例1C题组训练1。D2.B3。A4.C5.答案不唯一,如y=-x+3(k值为负数,b=3都可以)例2设直线AB的解析式为y=kx+b,又A(0,2),B(1,0),得EMBEDEquation.DSMT4解得EMBEDEquation.DSMT4∴直线AB对应的函数解析式为y=-2x+2。∵DB=DC,AD⊥BC,∴OC=OB=1.∴直线AB向左平移2个单位可以得到直线CD的解析式.∴直线CD的解析式为y=—2(x+2)+2=—2x-2.题组训练1。D2.B3.y=3x+24。∵直线y=2x-b经过点(1,—1),∴—1=2×1—b,∴b=3,∴不等式2x—b≥0,为2x-3≥0,得x≥EMBEDEquation.DSMT4.例3—2<x<—1题组训练1。D2。C3。A4.—2≤x≤—1例4(1)80+360=440;(2)根据图象可知点D(2,0),∵前两小时货车的速度为80÷2=40(千米/时),∴货车行驶360千米所需时间为360÷40=9(小时),∴点P(11,360).利用待定系数法可求得直线DP,即两小时后,货车离C站的路程y2与时间x之间的函数关系式为y2=40x—80;(3)∵点(6,0)和(0,360)在直线EF上,∴直线EF的函数关系式为y1=-60x+360。联立直线DP和EF的函数解析式得方程组EMBEDEquation.DSMT4解得EMBEDEquation.DSMT4答:客、货两车4.4小时相遇。题组训练1.22002.(1)设y=kx+b,由题意,得EMBEDEquation.DSMT4解得EMBEDEquation.DSMT4∴y=EMBEDEquation.DSMT4x+EMBEDEquation.DSMT4。(2)当x=6.2时,y=EMBEDEquation.DSMT4×6.2+EMBEDEquation.DSMT4=37。5(℃).即此时体温计的读数为37。5℃。3。(1)总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式分别是:y1=0。7[120x+100(2x-100)]+2200=224x—4800,y2=0.8[100(3x—100)]=240x-8000.(2)当y1>y2时,即224x-4800>240x—8000,解得x<200;当y1=y2时,即224x—4800=240x—8000,解得x=200;当y1<y2时,即224x-4800<240x—8000,解得x>200.即当参演男生少于200人时,购买B公司的服装比较合算;当参演男生等于200人时,购买两家公司的服装总费用相同,可在任一家公司购买;当参演男生多于200人时,购买A公司的服装比较合算。整合集训第1课时基础训练1。A2。C3。C4。A5。B6.A7。C8.A9.y=3x(答案不唯一)10.(0,-3)11.(1)将点A(1,4)代入解析式y=kx+3,得k+3=4。解得k=1。∴一次函数的解析式为y=x+3。(2)将各点的坐标代入解析式y=x+3,得当x=-1时,y=-1+3=2≠5,∴点B不在函数图象上;当x=0时,y=0+3=3,∴点C在函数图象上;当x=2时,y=2+3=5≠1,∴点D不在函数图象上。12.(1)当x≤5时,y=2x;当x〉5时,y=5×2+(x-5)×2.6=2.6x—3.(2)∵x=8>5,∴y=2。6×8—3=17.8(元)。13.(1)设y=kx+b,过(0,24),(2,12),∴EMBEDEquation.DSMT4解得EMBEDEquation.DSMT4∴y=-6x+24.(2)当y=0时,0=—6x+24,解得x=4,∴蜡烛从点燃到燃尽所用的时间为4小时.第2课时能力训练1。B2。C3.D4。C5.46.—2或—57.每增加1千克重物弹簧伸长0.5cm8.(1)令y=0,得x=-EMBEDEquation.DSMT4。∴A(—EMBEDEquation.DSMT4,0).令x=0,得y=3.∴B(0,3)。(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运筹学教程胡云权-第五运筹学-1线性规划图解法
- 护士礼仪服务培训本院图文
- 高中生物必修一知识点总结及习题
- 安徽省合肥市2024-2025学年第一学期八年级历史期中测试卷(含答案)
- 《我和小狐狸》绘本故事
- 社区个人工作计划改善社区基础设施
- 图书馆主题书展组织方案计划
- 个性化与品牌传播的统筹规划计划
- 兵乓球赛激烈对决计划
- 班级互动小游戏的设计与意义计划
- 班前安全技术交底记录表
- 六年级小学数学兴趣小组活动记录
- 新型研发机构备案申请表
- 血液透析患者水分控制的健康宣教
- 护理成绩单模板
- DB52T 1041-2015 贵州省红粘土和高液限土路基设计与施工技术规范
- 先天性甲状腺功能减退症研究白皮书
- 绘本成语故事:四面楚歌
- 孩子磨蹭和拖拉怎么办
- 东尼 博赞经典书系(套装5册):超级记忆
- DPPH和ABTS、PTIO自由基清除实验-操作图解-李熙灿-Xican-Li
评论
0/150
提交评论