




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市环大罗山联盟高三二模考试(针对性训练)数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数满足不等式组,则的最大值为()A. B. C.3 D.22.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有3.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且4.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.5.下列四个图象可能是函数图象的是()A. B. C. D.6.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.7.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.8.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A. B. C. D.19.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有()A.1个 B.2个 C.0个 D.无数个10.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A. B. C. D.11.已知向量,且,则等于()A.4 B.3 C.2 D.112.的展开式中的系数为()A.5 B.10 C.20 D.30二、填空题:本题共4小题,每小题5分,共20分。13.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.14.已知椭圆C:1(a>b>0)的左、右焦点分别为F1,F2,椭圆的焦距为2c,过C外一点P(c,2c)作线段PF1,PF2分别交椭圆C于点A、B,若|PA|=|AF1|,则_____.15.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____.16.已知函数,则关于的不等式的解集为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?18.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.19.(12分)已知数列的前n项和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令.求数列的前n项和.20.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.21.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.22.(10分)选修4—5;不等式选讲.已知函数.(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.2、B【解析】
根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.3、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.4、D【解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.5、C【解析】
首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.6、B【解析】
由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.7、D【解析】
根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.8、C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C.考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.9、B【解析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点在抛物线上,又焦点,,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种.故选:.【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.10、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.11、D【解析】
由已知结合向量垂直的坐标表示即可求解.【详解】因为,且,,则.故选:.【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.12、C【解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码”中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.14、【解析】
根据条件可得判断OA∥PF2,且|PF2|=2|OA|,从而得到点A为椭圆上顶点,则有b=c,解出B的坐标即可得到比值.【详解】因为|PA|=|AF1|,所以点A是线段PF1的中点,又因为点O为线段F1F2的中点,所以OA∥PF2,且|PF2|=2|OA|,因为点P(c,2c),所以PF2⊥x轴,则|PF2|=2c,所以OA⊥x轴,则点A为椭圆上顶点,所以|OA|=b,则2b=2c,所以b=c,ac,设B(c,m)(m>0),则,解得mc,所以|BF2|c,则.故答案为:2.【点睛】本题考查椭圆的基本性质,考查直线位置关系的判断,方程思想,属于中档题.15、【解析】
做中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做中点,的中点,连接,由题意知,则设的外接圆圆心为,则在直线上且设长方形的外接圆圆心为,则在上且.设外接球的球心为在中,由余弦定理可知,.在平面中,以为坐标原点,以所在直线为轴,以过点垂直于轴的直线为轴,如图建立坐标系,由题意知,在平面中且设,则,因为,所以解得.则所以球的表面积为.故答案为:.【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.16、【解析】
判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.【详解】令,易知函数为奇函数,在R上单调递增,,即,∴∴,即x>故答案为:【点睛】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)应该购买21件易耗品【解析】
(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可能的取值为,即可求得对应的概率,再分别讨论该单位在购买设备时应同时购买20件易耗品和21件易耗品时总费用的可能取值及期望,即可分析求解.【详解】(1)由题中的表格可知A型号的设备一个月使用易耗品的件数为6和7的频率均为;B型号的设备一个月使用易耗品的件数为6,7,8的频率分别为;C型号的设备一个月使用易耗品的件数为7和8的频率分别为;设该单位一个月中三台设备使用易耗品的件数分别为,则,,,设该单位三台设备一个月中使用易耗品的件数总数为X,则而,,故,即该单位一个月中三台设备使用的易耗品总数超过21件的概率为.(2)以题意知,X所有可能的取值为;;;由(1)知,,若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;;若该单位在肋买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;,所以该单位在购买设备时应该购买21件易耗品【点睛】本题考查独立事件的概率,考查离散型随机变量的分布列和期望,考查数据处理能力.18、(1);(2)是,【解析】
(1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程;(2)可设所在直线的方程为,,,,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、、的斜率、、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积.【详解】(1)因为椭圆的离心率为,所以,即,又,所以,①因为点在椭圆上,所以,②由①②解得,所以椭圆C的方程为.(1)可知,,可设所在直线的方程为,由,得,设,,,则,,设直线、、的斜率分别为、、,因为三点共线,所以,即,所以,又,因为直线、、的斜率成等差数列,所以,即,化简得,即点恒在一条直线上,又因为直线方程为,且,所以是定值.【点睛】本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档题.19、(Ⅰ);(Ⅱ)【解析】试题分析:(1)先由公式求出数列的通项公式;进而列方程组求数列的首项与公差,得数列的通项公式;(2)由(1)可得,再利用“错位相减法”求数列的前项和.试题解析:(1)由题意知当时,,当时,,所以.设数列的公差为,由,即,可解得,所以.(2)由(1)知,又,得,,两式作差,得所以.考点1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前项和.【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前项和,属于难题.“错位相减法”求数列的前项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.20、(1)见解析;(2).【解析】
(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶产业合作合同范本
- 餐饮员工生病免责协议书
- 酒店房间优惠转让协议书
- 美国海边农场转让协议书
- 私募股权基金意向协议书
- 艺术机构学员报名协议书
- 蔬菜大棚承包合同范本
- 镇江废旧锅炉拆除协议书
- 美国餐厅预定转让协议书
- 聚创医药员工合同范本
- 重庆交通大学-黄璇-答辩通用PPT模板
- 中国医院质量安全管理 第4-13部分:医疗管理住院患者健康教育 T∕CHAS 10-4-13-2020
- 新沪教牛津版七年级上册英语全册教案
- 《航空专业英语》课件维修专业基础英语R1
- 【课件】第17课实验与多元——20世纪以来的西方美术课件高中美术人教版(2019)美术鉴赏
- 吊装作业安全告知牌(现场张贴)
- 2024年义务教育国家课程设置实施方案
- 电动机调试运行记录
- 临床心理科工作指标及管理要求
- 全国统一建筑工程基础定额(共116页)
- Module-9-Unit-1-could-I-ask-if-youve-metioned-this-to-her
评论
0/150
提交评论