版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2024-2025学年江苏省无锡市江阴市长泾第二中学九年级(上)10月随堂练习数学试卷一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的选项中,只有一项是符合题目要求的。1.下列方程中,关于x的一元二次方程是(
)A.2x−1=3x B.1x2+4x+1=0 C.22.用配方法解一元二次方程x2−8x+5=0,将其化成x+a2=bA.x+42=11 B.x−42=21 C.3.已知⊙O的半径是一元二次方程x2−5x−6=0的一个根,圆心O到直线l的距离d=5,则直线l与⊙O的位置关系是(
)A.相交 B.相切 C.相离 D.平行4.下列说法正确的是(
)A.经过三点可以作一个圆
B.三角形的外心到这个三角形的三边距离相等
C.等弧所对的圆心角相等
D.相等的圆心角所对的弧相等5.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆形的半径为1,扇形的圆心角等于60∘,则这个扇形的半径R的值是(
)
A.3 B.6 C.9 D.126.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O半径长为(
)
A.10 B.5 C.6 D.7.如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是(
)
A.AE⊥DE B.AE//OD C.DE=OD D.∠BOD=50°8.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D,E在圆上,四边形BCDE为矩形,这个矩形的面积是(
)
A.2 B.32 C.3 9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画RtΔABC,使∠ACB=90∘,BC=a2,AC=b,再在斜边ABA.AC的长 B.AD的长 C.BC的长 D.CD的长10.如图,AB是⊙O的直径,AB=4,点C是上半圆AB⌢的中点,点D是下半圆AB⌢上一点,点E是BD⌢的中点,连接AE、CD交于点F.当点D从点A运动到点B的过程中,点FA.22π B.2π 二、填空题:本题共8小题,每小题3分,共24分。11.关于x的一元二次方程(k−1)x2+6x+k2+k−2=0有一个根是012.某圆锥的母线长是2,底面半径是1,则该圆锥的侧面积是
.13.某生物实验室需培育一批有益菌,现有40个有益菌,每个有益菌每次可分裂成若干个相同数目的有益菌,经过两轮分裂后,有益菌的数量为16000个.设平均每个有益菌每次可分裂成x个有益菌,根据题意,可列方程:
.14.如图,▵ABC的外接圆O的半径为3,∠C=55∘,则劣弧AB⌢的长是
.(结果保留π)
15.如图,⊙I为▵ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若▵ABC的周长为21,BC边的长为6,▵ADE的周长为
.
16.⊙O是▵ABC的外接圆,连接OB,∠ABO=28∘,则∠C的度数为
,17.如图,在边长为2的正方形ABCD中,以点D为圆心.AD的长为半径画弧,再以BC为直径画半圆.若阴影部分①的面积为S1,阴影部分②的面积为S2,则S2−S1的值为18.如图,在矩形ABCD中,AD=10,AB=16,P为CD的中点,连接BP.在矩形ABCD外部找一点E,使得∠BEC+∠BPC=180∘,则线段BP长为
;线段DE的最大值为
.
三、计算题:本大题共1小题,共6分。19.解方程:(1)(2)四、解答题:本题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤。20.(本小题8分)
先化简再求值:2aa−2+a÷aa221.(本小题8分)
已知关于x的一元二次方程x2−(m+3)x+2(m+1)=0(1)求证:不论m为何值,方程总有实数根(2)若该方程有两根为x1,x2,且x22.(本小题8分)如图,四边形ABCD内接于⊙O,AB⌢=AC⌢,连接AC,若23.(本小题8分)如图所示,有一圆弧形拱桥,其跨度AB=10m,拱高为1m.
(1)请你确定圆弧所在圆的圆心(尺规作图,不写做法,保留作图痕迹);(2)求拱桥所在圆的半径.24.(本小题8分)如图,AB是⊙O的直径,AC是弦,D是AB⌢的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF(1)求证:CF为⊙O的切线;(2)连接BD.若CF=4,BF=2,求BD的长.25.(本小题8分)
(1)在图①中,已知⊙O1,点P在⊙O1上,过点P作(2)在图②中,已知⊙O2,点Q在⊙O2外,过点Q作⊙26.(本小题8分)
某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.(1)平均每天的销售量为
本(用含x的代数式表示);(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?27.(本小题8分)如图1,平行四边形ABCD中,AB=8,BC=4,∠ABC=60∘.点P为射线BC上一点,以BP为直径作⊙O交AB、DC于E、F两点.设⊙O
(1)如图2,当⊙O与DP相切时,x=
.(2)如图3,当点P与点C重合时,①求线段CE长度;②求阴影部分的面积;(3)当⊙O与平行四边形ABCD边所在直线相切时,求x的值;28.(本小题8分)
(1)【学习心得】小宸同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在▵ABC中,∠BAC=90∘,AB=AC=AD,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90∘,∠BAC=26∘,求∠BDC的度数.小宸同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:▵ABD的外接圆就是以BD的中点为圆心,12BD长为半径的圆;▵BCD的外接圆也是以BD的中点为圆心,12BD长为半径的圆.这样A(3)【问题拓展】①如图3,▵ABC的三条高AD、BE、CF相交于点H,求证:∠EFC=∠DFC.②如图4,在▵ABC中,∠BAC=45∘,AD是BC边上的高,且BD=3,CD=1,直接写出AD参考答案1.D
2.D
3.A
4.C
5.B
6.B
7.C
8.C
9.B
10.B
11.−2
12.2π
13.40x14.11π615.9
16.62∘或11817.3π218.213+
19.【小题1】解:x∵a=1,b=−3,c=−1,∴b则x=−b±x1【小题2】x−5∵则x−5=0或3x−5=0,解得x1
20.解:原式====aa+2把x=a代入x2得a2∴a∴原式=1.
21.【小题1】由题意:a=1,b=−m+3∴Δ=====m−1∴不论m为何值,方程总有实数根;【小题2】∵方程的两个实数根x∴∵x∴x即m+32解的m=0或m=−2,经检验:m=0或m=−2符合题意.
22.解:∵∴∠ACB=∠B在▵ABC中∵∠BAC+∠B+∠C=180∘∴∠B=∠ACB=∵四边形ABCD内接于⊙O∴∠B+∠D=∴∠D=180
23.【小题1】根据弦的垂直平分线都经过圆心,作AB的垂直平分线MN,交弧于C,连接BC,作BC的垂直平分线EF,MN与EF相交于O,点O就是所求的圆心.如图,【小题2】连接OA.设这个拱桥的半径为r,则OD=r−1,∴AD=BD=1在Rt△OAD中,AD=5m,OD=r−1.由勾股定理得:O即r2=5这个拱桥所在圆的半径长为13m.
24.【小题1】如图,连接OC,OD,∵OC=OD,∴∠OCD=∠ODC,∵CF=EF,∴∠FCE=∠FEC,∵∠OED=∠FEC,∴∠OED=∠FCE,∵AB是直径,D是AB⌢∴∠DOE=90∴∠OED+∠ODC=90∴∠FCE+∠OCD=90∘,即∵OC是半径,∴CF是⊙O的切线;【小题2】设OA=OD=OC=OB=r,则OF=r+2,在Rt▵COF中,OC∴4解得r=3,∴OB=OD=3,∵∠DOB=90∴BD∴BD=
25.【小题1】如图①,l1【小题2】如图②,l2
26.【小题1】(100+10x)【小题2】由题意可得,(60−40−x)(100+10x)=2240,整理得x2解得x1=4,∵要求每本售价不低于55元,∴x=4符合题意.故每本画册应降价4元.
27.【小题1】4【小题2】解:①∵点P与点C重合,∴BC为⊙O的直径,∴∠BEC=90∴∠BCE=90∴BE=1在Rt▵BCE中,CE=②如图2,连接OE,∵BE∴∠BOE=2∠BCE=60过点E作EH⊥OB于H,则∠OEH=30∴OH=1∴EH=∴=60π×【小题3】解:①当⊙O与直线CD相切时,如图3,∴OF⊥CD,∴∠OFC=90∵∠OCF=∠ABC=60∴∠COF=30∴CF=1∵OB=OF=x,∴OC=4−x,CF=1∵CF∴1解得:x=−12+83或x=−12−8②当⊙O与直线AD相切时,如图4,过点O作OT⊥AD于T,连接AC,则OT=OB=x,取AB的中点G,连接CG,∴BG=AG=∵∠ABC=60∴▵BCG是等边三角形,∴CG=BC=4=AG,∴∠BAC=∠ACG=30∴∠ACB=∴AC=∴∠ACO=90∵四边形ABCD是平行四边形,∴AD//BC,∴∠TOC=∠DTO=∠ATO=90∴四边形ACOT是矩形,∴x=OT=AC=4综上所述,x=−12+83或
28.【小题1】45【小题2】解:如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BAC=26∴∠BDC=26【小题3】①证明:∵BE⊥AC,CF⊥AB,如图3,∴点A、F、H、E在以AH为直径的同一个圆上,∴∠EFC=∠DAC,同理:点B、D、H、E在以BH为直径的同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园安全工作总结及改进措施
- 企业主要负责人安全培训试题(预热题)
- 铁路运输事故应急池施工方案
- 电力低压安全生产
- 幼儿园新教师工作总结与家长沟通技巧
- 大型游泳赛事安全保障制度
- 公共交通卫生事件应对方案
- 工作总结与计划撰写培训
- 精神健康安宁疗护方案
- 工业设备拆除与改造施工方案
- 航空餐饮服务课件
- 保洁服务投标方案(技术方案)
- 基于数据的医疗质量管理策略
- C-TPAT 供应商安全评估表
- 医疗卫生机构安全生产标准化文件汇编
- 全国职业院校技能大赛(航空服务赛项)备赛试题库(汇总)
- JGT368-2012钢筋桁架楼承板规范
- 装配式围档施工方案
- 浙教版劳动教育六年级上册项目三 任务一《班级生活共观察》教学课件
- 小学信息技术-声控的秘密教学设计学情分析教材分析课后反思
- 课程名称耳应用解剖学
评论
0/150
提交评论