版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IntroductiontoLowCarbonGasTechnologies
Contents
OVERVIEWPage3
Part1:DECARBONISATIONPage6
BiomethaneproductionthroughanaerobicdigestionPage6
PyrogasificationPage8
HydrothermalgasificationPage9
E-methanePage10
SolarphotocatalyticprocessesPage11
Part2:DIVERSIFICATIONPage12
MethanereformationPage13
-MethanereformingprocessforpureH2productionPage13
WaterelectrolysisPage14
ThermalgasificationPage14
MethanepyrolysisPage15
SolarphotocatalyticprocessesPage15
BiologicalproductionPage16
GeologicalextractionPage17
Part3:INNOVATION
Page18
ACKNOWLEDGEMENTS
Page19
Frontcoverimage:iS/artisteer
02IntroductiontoLowCarbonGasTechnologies
Overview
Attheendof2023,morethan140countrieshadamid-century
carbon-neutralitypledge.Meetingthesecommitmentswillrequirea
dramaticandrapidchangeintheentireglobalenergysystem,onewhichtheflexibilityandinnovationofthegasindustryiswellplacedtodeliver.
Reducingemissionsinlinewiththe2015ParisAgreementonClimateChangewillrequire,asaminimum,therampingupofthreekeyareas:
1
Decarbonisation:improvingenergyefficiency,andreducingemissionsandmethaneleaks.
2
Diversification:usingnaturalgaswithlow-carbonandrenewablealternatives,suchasbiomethane,e-methaneandhydrogen.
3
Innovation:supportingtheindustry,bothfromalegislative,regulatoryandinvestmentperspectivetocontinuouslyinnovateitsproductsandservicesrenderedtomarkets,consumersandusers.
Organicgrowth:
Amodernbiofuelgasplant.
Photo:iS/VadymTerelyuk
IntroductiontoLowCarbonGasTechnologies03
Overview
AlignedtoIGU’ssupportoftheParisAgreement’sNationallyDeterminedContributionstoreduceGHG
emissionsanditscommitmenttosignificantlydecarbonisetheglobalenergysystem,this“IntroductiontoLowCarbonGasTechnologies”providesabriefguideonkeylow-carbonandrenewablegastechnologiesthatarecurrentlyavailablefordeploymenttorampupthegasindustry’seffortstowardsdeepdecarbonisation.
Naturalgasanditsevolvingtechnologiessupporttherenewableenergysupplybyovercomingintermittencyandinstability.Existingnaturalgasinfrastructurewillalsoenablecost-effectiveandmorerapiddeploymentoflow-carbonandrenewablegases-criticalfordeepdecarbonisationoftheglobaleconomy.Together,theycanenablenet-zeropathways,energysecurityandaccessissues.
Futureenergymix:
Therearearangeof
optionsonthehorizon.
Image:iS/sharfsinn
04IntroductiontoLowCarbonGasTechnologies
Overview
I.
Thefirstsectionofthereportwillreviewthemainfivelow-CO2gastechnologiesaimingtodecarbonisethemethanemoleculesupplychain.Theseare:
1
Anaerobicdigestion:biomethanebasedonwetbiomass.
2
Pyrogasification:syntheticmethaneobtainedfromthermo-chemicalprocesswastesrichincarbon.
3
4
Hydrothermalgasification:syntheticmethanebasedonliquidbiomasstreatmentathightemperatures.
5
E-methane:syntheticmethaneusingcarbondioxideasfeedstock.Solarphotocatalyticprocesses.
Thesecondsectionofthereportwillprovideanoverviewofhydrogenproduction
technologiesasenergycarriers.Currently,thereisalimitednumberofsuchtechnologiesinwidespreadoperation,andthesemustberampedupbyordersofmagnitudetobe
consistentwiththeworld’scurrentclimatetargets.Onlythencanweensurethattheprioritiesofenergysecurityandenergytransitiondonotundermineeachother.
Thecurrentenergy-carryinghydrogenproductiontechnologiesare:
Methanereformation:extractinghydrogenfrommethanemoleculesandremovingCO2.
Waterelectrolysis:usingrenewableelectricitytoproducehydrogenfromwater.
Thermalgasification:extractinghydrogenfromsolidmaterialwithhighheat.
Methanepyrolysis:extractinghydrogenfrommethaneusingaprocessthatdoesnotproduceCO2.
Solarphotocatalytic:usingdedicatedsolarenergyinstallationstoproducerenewablehydrogen.
Biologicalproductionofhydrogen:throughfermentationandphotolysisofbiomass.
Geologicalextractionofnaturalhydrogen.
2.
4
6
3
7
2
5
1
IntroductiontoLowCarbonGasTechnologies05
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONAEDUGAZ
bcu
I.Decarbonisation
1Biomethaneproductionthroughanaerobicdigestion
Feedstocksproduction,storageandphysicalpretreatment
Production
Digestate
valorisation
Biogas/Biomethanevalorisation
Anaerobicdigestion
Biogas
Combinedheat
andpowerplant
(CHP)
Digestate
Collect
feedstocks
Digestatestorage
Fertilizer
Storage
Biogasupgrading
Biofuel
Spreading
Naturalgasgridinjection
Agriculturalwastes
Other
biowastes
Electricity
Biomethane
Manure
Heat
Anaerobicdigestionisaprocessthroughwhichbacteriabreakdownorganicmatterintheabsenceofoxygen.
Thisprocessreleasesenergy-richbiogas,whichisrelativelyhighinmethane(CH4)contentandcanbe
capturedandusedasfuel.Itcanbeenhancedeitherbyinjectinghydrogen(H2)inthereactororbyusingalightelectricalcurrenttoimprovetheCH4/CO2-ratio.
Thereisawiderangeofpotentialorganicmatterinputsthatcanbeusedasfeedstock,suchasfoodandfeedindustrywastes,manureandslurry,greenwastes,intermediatecropsandsewagesludge.
06IntroductiontoLowCarbonGasTechnologies
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
Biomethaneisconsideredcarbon-neutral
Biomethaneproductioncapturesmethane,astrong
greenhousegas,fromitsbiorawmaterial,andturnsitinto
usefulfuel.Thisprocessstopsmethanefromescapingintotheatmosphere,whereitwouldcontributetoglobalwarming.
Biomethane,madefrombiogas,canbeusedjustlikenaturalgas.
Iteasilyusestheexistinggassystemswithoutneedinganychanges,makingitacost-effectiveandsimplewaytosupportdecarbonisation.
CO2fromtheatmosphereiscapturedbyorganicwasteusedtoproduce
biomethane.ItscombustionproducesbiogenicCO2emissions.
Compensationeffect:almostnoimpactongreenhousegasemissions.
0
CarbonNeutral
%
1.CollectionOrganicwasteiscollectedand
transportedtothemethanisationsite.
fermentation
processwhichproduces
digestateandbiogas.
Digestate
Isusedandanaturalfertiliser.
Biogas
Arenewablefuelto
generateheat(hotwaterandsteam)and
electricity(CHP)onsite.
Organicwaste
goesthroughananaerobic
2.Anaerobicdigestion
RGGO=1MWhgreengasinjected
4.EndusesBiogasispurifiedtobeinjectedinto3.Upgrade
thegasgridforindustrialanddomesticuses,suchasheatingandcooking.
Thesefeedstocksarecollectedandtransportedtothefacility(methanisationsite),wheretheyareturnedintobiogas.
Thebiogascanthenbedirectlyusedtoproduceelectricityandheat,oritcanbepurifiedintoBiomethane,whichisaone-for-onereplacementfornaturalgas.
Biomethanecanbeinjectedintotheexistinggasgridforindustrialanddomesticuses,suchasheatingorcooking,andformobilitypurposes.Itisimportanttorememberthattheefficiencyofbiomethaneproductionisheavilydependentonthesourcematerial.
IntroductiontoLowCarbonGasTechnologies07
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
2Pyrogasification
Pyrogasificationisathermochemicalprocessthatconsistsofheatingwasteintheabsenceofoxygentoproducearenewablemethane.Ithastwomainsources:
IDrybiomass:woodwaste,residuesfromwastemanagement,andmostorganicwaste.
IISolidrecoveredfuels(SRF)areproducedfromhouseholdrecyclingwasteandgeneralindustrialandcommercialwaste.
Oncecollected,thewasteisheatedtoveryhightemperatures(800to1,500degreesCelsius)inthepresenceofasmallamountofoxygen,convertingthewasteintosyntheticgas(syngas).Syngasisrichincarbonmonoxide,hydrogen,carbondioxideandmethaneandmustbepurified.
SyngasfromSRFcontainsmorepollutantsthansyngasfromcleanbiomass,suchasfromplants.Further
challengesarefoundinconventionalinorganicgasremovalprocesses,whichmustbeadaptedbeforebeinguseable.
Developmentisalsonecessarytopurifythesyngasaccordingtoitsfutureusage,includinginmakingammonia,methanolorotherindustrialchemicalsandfuels.
Pyro-gasificationprocess
Stepaimingtoincreasethecarbon
conversion
intomethane
Stepaiming
atconvertingbiomassintoasyntheticgas(<<syngas>>)richinCO,H2,CO2andCH4
Stepdesignedtoremove
undesirablecompoundssuchastarsorinorganicsulfur
StepdesignedtoadjustthebioSNGqualityaccordingto
itsusage
CO+3H2>>CH4+H2OCO2+4H2>>CH4+2H2O
Hightemperatureheatapplied
Renewable
carbon
feedstock
Catalytic
methanation
Syngas
purification
Gas
upgrading
Removingimpurities
BioSNG
Fieldwork:Biogasfromcorn.Photo:iS/Jan-Otto
08IntroductiontoLowCarbonGasTechnologies
Decarbonisation
3Hydrothermalgasification
Hydrothermalgasificationrequiresthepresenceofwatertoconvertwetorliquidorganicwasteintosyngas,throughaprocesswhichsubjectsthewastetohighpressureandtemperatures.
Theproducedsyngasisarenewablegas,composedofmethane,hydrogenandcarbondioxide.However,thecompositionofthissyngasvaries,accordingtothecharacteristicsoftheinputs.
Theprocesscreatesgreengasesusingliquidorganicwaste,whichisotherwisedifficulttodisposeof,suchasdigestatesfromanaerobicdigestion,sewagesludgefromindustrialormunicipalwastewatertreatmentplants,macroandmicro-algae,liquidandsolidfarmingwaste,foodindustryresiduesandby-products.
Thehydrothermalgasificationconsistsofthefollowing:
-Liquidorganicwasteispumpedathighpressure(260-300bars).
-Thematterthenpassesthroughaheatexchanger,whichseparatesphosphorus,potassium,calciumandmetalswhichareextractedandrecovered.
Hydrothermalgasificationisgasificationinhotcompressedwaterwhichuseswaterinasupercriticalstate
HydrothermalreactorSyngasabovethe
watersupercritical
point(221bar,374oC)
Non-catalytic600-700oC
S
Syngas
Separation
Catalytic380-420oC
CH4
Liquidorganicwaste
Productionofsyngas,CH4,H2,orchemicals
●Rawsyngascanbevalorisedeitherdirectlyforheatand/orelectricityproduction,orpurifiedtocleanCH4orH2,orconvertedintochemicals.
CH4contentreaches50-60%incatalyticconversion,andupto90%whenH2isco-injectedinthegasifier.H2concentrationcanachieve50-75%insyngas.
Source:2020.LeCadreE.MertensJ.EmergingSustainableTechnologies
P,K,Ca
metalsrecovery
Heat
exchanger
Waterand
NH4+
260-300bar
Purification
Pump
CO2
H2
Theprocessispossibleatbothhigherandlowertemperatures(aslongasacatalystisused).Therearepositivesandnegativesforboth,ashighertemperaturesrequiremoreenergy,andtheuseofapreciousmetalcatalystatlowertemperaturesiscostlyandhasafinitelifespan.
IntroductiontoLowCarbonGasTechnologies09
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
Theresultingsyngasisthenpurifiedtoextractunwantedcarbondioxide,leavingmethaneandhydrogen.Thisrawsyngashasthepotentialtobeuseddirectlyforheatandelectricityproduction.Alternatively,the
hydrogencanbeusedtoconvertsomeofthecarbondioxideintoadditionalmethanethroughamethanationstep,afterwhichtheresultinggascanbetreatedsoitisreadytoinjectintothegastransmissionsystem.
Methanecontentreaches50-60%incatalyticconversionandevenupto90%whenadditionalhydrogenisalsoinjectedintothegasifier.Theprocessproducesmethaneorhydrogenefficiently.
4E-methane
Methanationcanalsobeusedtocombinecarbonmonoxide(CO)orcarbondioxide(CO2)withhydrogentoproducee-methane,inaprocessthatalsoproducesheat.Methanationisaprocessthroughwhich
hydrogenisconvertedintomethane,whichcanbeusedintheexistingnaturalgasinfrastructure.
Carbondioxidecanbeobtainedfrommanysources,suchasmethanisationplants(biogenicCO2)orfrom
industrialproductionandcapturefromtheatmosphere,supportingthedevelopmentofawiderangeofnewtechnologiesthatmayhavethepotentialtoreducegreenhousegasemissions.
CO2canbeusedasbuildingblocksforhighadded-valuefuelslikemethane
SOURCEofCO2
Atmosphere
Cleaning
Capture(iflowconcentration)
OR
Industry
SOURCEofHYDROGEN
elabityle}Electrolyser
Plants
Algae,Cynobacteria,
CO2
CO2
Minerals
Bacteria
CO2
C2}2
+
CO2
VALORISATION
PHOTOSYNTHESISBiological
ENHANCEDOILRECOVERY
CARBONATIONFOODINDUSTRY
POLYMERISATIONChemical
MINERALISATIONChemical
FERMENTATIONBiological
HYDROGENATIONChemical
Co-Electrolysis
MARKETS
Decarbonisedrenewable
electricity
requiredforallprocessestobe
sustainable
Thiscouldbesyntheticnaturalgas(=syntheticmethane)
10IntroductiontoLowCarbonGasTechnologies
Decarbonisation
5Solarphotocatalyticprocesses
Artificialphotosynthesis(AP),alsoknownassolarphotocatalyticprocess,hasthepotentialtoproducesyntheticmethane.ThisprocessdecreasesorremovestheneedforusingelectricalpowerandGHG
emissions,aswellasbiomass,intheproductionoflow-CO2methane.
Artificialphotosynthesisseekstoreplicatethenaturalphotosynthesisprocess.Itwidelyusessemi-conductorsasthephotocatalyst,anditoftensplitstheprocessintotwosteps:
IProductionofhydrogenbysplittingwaterthroughthemethodofphotocatalysis.
IICarbondioxideproduction,anditssubsequentreactionswithhydrogen,toformlightweighthydrocarbons,byusingdifferentapproaches.
OxygenEvolution
Reaction(OER)
h
O2
Greenhydrogenmarket
CO2
H2O
bH2b
(photo)-electrocatalysis
HydrogenEvolution
Reaction(HER)
Greensyntheticmolecules
(CH4,CH3OH,COOH,CxHy,...)
Conversion:PhotovoltaicpowersupplysystemsPhoto:iS
IntroductiontoLowCarbonGasTechnologies11
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
2.Diversification
Hydrogenissettoplayagrowingroleintheenergysector,withseveralemergingtechnologiesaimingtoconvertvariousinputsintohydrogen,whichcanthenbeutilisedwithinthepowerandheatingindustries,andasfeedstockinthechemicalindustry.
Thegraphbelowillustrateshydrogenproductiontechnologiesandtheirpotentialenergysources:
Hydrogen
Inadditiontothesetechnologies,geologicalH2isemergingasapotentialsource.
Mostexistinghydrogenmarketsareveryspecific,consistingmainlyofindustrialuseandsupplyinginputsintoammoniaandmethanolproduction,actingalsoasareducingagentforthepetrochemical,chemical,steelandfoodindustries.
Presentusesofhydrogenasanenergycarrierremainlimited,andoftenexperimentalandpilot;however,
globalplanstoexpandthemaresignificant.Thereareseveraltechnologyadvancementprioritiestoaddressfortheseplanstomaterialise:
-Loweringcostsandgrowingtheircommercialtrackrecord.
-Storageandtransportationtechnologies,infrastructure,andstandards.
-Certificationdevelopment.
-End-userequipmentconversiontosupporthydrogenasfuel.
12IntroductiontoLowCarbonGasTechnologies
Diversification
INTERNATIONALGASUNION
UNIONNTERNATNALEDUGAZ
1Methanereformation
I
Methane(CH4)canbeutilisedtocreatepurehydrogenusingthefollowingprocessofsteammethanereformation:
II
Byusingheat,steamandmethanereacttogetherwithacatalysttoformcarbonmonoxideandhydrogen;thisisanenergy-intensiveprocess.
Inthewater-gasshiftreaction,carbonmonoxideiscombinedwithmoresteam,
producinghydrogenandcarbondioxide.Thecarbondioxidecanthenbecapturedthroughcarboncapturetechnologies,asitisinacontrolledenvironment.
Ifcarboncaptureandsequestrationarenotutilisedduringthisprocess,therewillbecarbonemissions
associatedwithit.However,whencarboncaptureandsequestrationareaddedtotheprocess,thehydrogenproducedisconsideredlowcarbon,alsocalled“bluehydrogen”.
MethanereformingprocessforpureH2production
Thisprocessconsistsoffourstages:
IPretreatmentunittopre-formfeedstockandtoeliminatesulphurcompounds.
IIReformingsteptoproducesyngasusingeithersteammethanereforming,partial
oxidisationorautothermalreforming.Itispossibletocombinethesetechnologies.IIIShiftreactor(s)toconvertsyngasand(increaseH2contentanddecreaseCO).
IVThepurificationunitseparatesthehydrogenfromtheproductstream.CO2canbecapturedthroughcarboncapturetechnologies.
1
Pretreatment
2
SteamMethaneReforming
Partial
Oxidation
AutothermalReforming
Steam
Heat
3
Water-GasShiftConversion
4
CO2
NaturalGas,HeavyOil,Naphtha,LPG
O2
Steam
O2
CO2
Purification
Hydrogen
Catalysts:
-TherelativecatalyticactivityofmetalsintheSMRreaction:Ru>Rh>Ir>Ni>Pt>Pd
PartialOxidation
CH4+1/2O2>>CO+2H2H=36kJ/mol
-Conventionaliron-chromiumforhightemperatureWGSandcopperalloysforlowtemperatureWGS
AutothermalReforming
CH4+H2O>>CO+3H2CH4+1/2O2>>CO+2H2
Water-GasShift
CO+H2O>>H2+CO2H=41kJ/mol
SteamMethaneReforming
CH4+H2O>>CO+3H2H=206kJ/mol
IntroductiontoLowCarbonGasTechnologies13
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
2Waterelectrolysis
Waterelectrolysisisawayofproducinghydrogenthatuseselectricitytosplitwaterintohydrogenand
oxygen.Whentheelectricityusedintheprocessisrenewableornuclear,therearenoGHGemissionsproducedintheprocess,andthiscanbereferredtoasrenewable,“green”and“pink”hydrogen,respectively.
Anelectricalcircuitiscreatedbycombininganelectrolyteandtwoelectrodestoformanelectrolyticcell.Thesechargedelectrodesthensplitthewater,withtheresultingnegativelychargedelectrodeattractingthepositivelychargedhydrogenionsand,conversely,thepositiveelectrodeattractingthenegativelychargedoxygenions
formingseparatebubblesofoxygenorhydrogenthatcanthenbecollected.
Therearefivemaintechnologiesusedtoperformwaterelectrolysis,whichdifferintermsofthematerialsusedfortheelectrodesandplates:
I
II
III
Alkalineelectrolysis
PEM(Protonexchangemembrane)electrolysis
SOEC(Solidoxideelectrolysis)
IVPCEC(Photoelectrochemical)
VAEM(Anionexchangemembrane)
Eachofthesefivetechnologieshasbenefitsanddrawbacks,rangingfromcost,efficiency,anddurability.
Thisiswhyfurtherresearchtoimproveperformanceandviabilityofwaterelectrolysisiscurrentlyongoing.
3Thermalgasification
Thermalgasificationisaprocessthatuses
solidorganicmatter(suchascoal,biomass-basedfeedstocks,SRFsandfractionsofnon-recyclableplastics)andconvertsthemintosyngasusing
hightemperatures(rangingfrom700-1500°C).Thereactionoccursunderstoichiometric
conditions(meaningallreactantsarecontrolledandfullyused),turningsolidresiduesinto
syngas.
Thesyngasisthenpurifiedtoremoveorganic
pollutants(suchaslightandheavytars)and
inorganicpollutants(suchashydrogensulphide,ammonia,andhydrochloricacid).Thisisthen
followedbythegas-watershiftreaction,which
meansthatthecarbonmonoxideproducedcan
beconvertedintoadditionalhydrogenandcarbondioxide.
Thegasesproducedarecollected,andhydrogenisextractedfromtheothergasesproduced(mainlycarbondioxide,carbonmonoxideandmethane)togivethehydrogenapurityofover99.9%.
14IntroductiontoLowCarbonGasTechnologies
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
4Methanepyrolysis
Methanepyrolysisusesmethaneasfeedstockand,byapplyingenergytobreakthechemicalbondbetweencarbonandhydrogen,itproduceshydrogengasandasolidcarbonproduct.
Theprocessrequireslessenergythanelectrolysis,anditsGHGfootprintislowduetotheabsenceofemissions.
Usingnaturalgasasfeedstockalsoprovidesthebenefitofaccesstotheexistinginfrastructure.Therearedifferentwaysofgeneratingtheheatformethanepyrolysis:
IPlasmapyrolysis:electriccurrentsareusedtocreateahotplasmawhichbreaksdownthemethaneintohydrogenandcarbon.
IIThermalpyrolysis:hotbathsofmoltensaltsormetalsareusedtobreakdownthemethaneintohydrogenandcarbon.
IIICatalyticpyrolysis:methaneispassedthroughafluidisedbedcontainingacatalystwhichbreaksdownthemethanewithincreasedefficiency.
IVMicrowaveassistedpyrolysis:microwavesareusedwithacatalysttobreakthemethanemoleculeintohydrogenandcarbon.
5Solarphotocatalyticprocesses
SolarphotocatalyticprocessesavoidanyGHGemissionsastheyrelyexclusivelyonsolarpower:
aphotocatalyticinstallationwhichcouldbefurtherenhancedbytheadditionofsolarPVpanels.Inthis
process,aphoto-absorber(typicallyasemi-conductor)absorbslight,leadingtotheseparationofpositiveandnegativecharges.Thereductioncreateshydrogen,andoxidationproducesoxygen,hydrogen,and
e-charges,makingthemavailableforredoxreactions(transferofelectrons)toproducehydrogenfromwater.Thisbasicconceptisutilisedinseveraltechnologies:
I
Photocatalysed(PC)watersplitting:thissystemisthesimplestoneand
consists,typically,ofaphotocatalystimmersedinasolution,atthesurfaceof
whichthereactionstakeplace.Oxygenandhydrogenmustbefurtherseparated.
II
Photo-ElectroChemical(PEC)watersplitting:thissystemisbasedontheprincipleofelectrolysiswheretheanodeand/orcathodeareimplementedwithphotocatalysts.Thedifference,comparedtophotocatalysedwater
splitting,isthatthissystemiselectro-assisted,allowingthecurrenttobeincreasedforhigheryields.
III
Photo-ElectroChemical(PV-EC)watersplitting:thislastsystemisoftenassociatedwithPCandPECprocessesandconsistsofanelectrolyser
equippedwithanintegratedhighlyefficientmultijunctionIII-VPVcell.
IntroductiontoLowCarbonGasTechnologies15
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
6Biologicalproduction
Therearetwomainbiologicalprocessesthatcanbeusedtoproducehydrogen:fermentationandbiophotolysis.
Thefermentationprocessharnessesmacro-nutrients(longmolecules)frombiomass,whicharebrokendown
intohydrogen,andshortmoleculessuchasalcohols,simplesugars,andvolatilefattyacids.Variousfermentationtechnologiesarelistedbelow,anditshouldbenotedthatphotofermentationandMECmustbecoupledwith
thefirststepofdarkfermentationinatwo-stepprocess.
IDarkfermentation(fermentationwithoutlight),wherethesubstrateusedisacomplexorganicmatter.Large-scalebacteriacanperformdarkfermentation.
IIPhoto-fermentation(fermentationassistedbylight),wherethesubstrateusedissmallorganicacids.
IIIMECfermentation(assistedbyalowelectricalcurrent),wherethesubstrateusedisasimplecarbonsourcesuchasC2toC6(volatilefattyacids,singlesugarandalcohols).
WhileBiophotolysisproduceshydrogenfromlightandwater,cyanobacteriaandgreenalgaecansplitwaterintohydrogenandoxygenusingtheirhydrogenaseornitrogenaseenzymesystem.
Macro-nutrientsfrombiomass
Carbohydrates,
proteins,
lipids
Image:iS
(alcohols,simple
sugars,volatile
fattyacids)
Bacteria
H2+shortmolecules
16IntroductiontoLowCarbonGasTechnologies
Diversification
7Geologicalextraction
TherearetwomainwaysofproducingH2throughgeologicalextraction:
Naturalhydrogenproduction(“white”hydrogen)
H2ismainlyproducedthroughnaturalwater-rockreactions,suchasserpentinisation,wherewater
reactswithiron-richmineralswithintheEarth’s
crust.Thishydrogenper
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国自动插引内筒泥底压实机数据监测研究报告
- 2024至2030年中国果菌速净数据监测研究报告
- 2024至2030年中国圆筒混合机橡胶衬板数据监测研究报告
- 2024至2030年中国传动用三角带数据监测研究报告
- 2024年中国长型灯市场调查研究报告
- 2024年度癸卯兔年生肖纪念版三轮车采购合同
- 2024版特许经营合同:知名快餐品牌与区域加盟商之间的合作协议
- 英文货物合同范本
- 维修保证合同范本
- 二零二四年度北京市宝马7系轿车租赁合同
- 2023年中国石化招聘笔试真题
- 中国普通食物营养成分表(修正版)
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 清华大学出版社机械制图习题集参考答案(课堂PPT)
- 工程四新技术应用
- 小儿常见眼病的诊治与预防PPT参考课件
- 银行税收自查报告(共5篇)
- 鼻内镜鼻窦手术技术操作规范(完整版)
- 最新人教版高中化学实验目录(修订版)
- 泵站自动化技术要求
评论
0/150
提交评论