国际天然气联盟-低碳气体技术导论 Introduction to Low Carbon Gas Technologies 2024_第1页
国际天然气联盟-低碳气体技术导论 Introduction to Low Carbon Gas Technologies 2024_第2页
国际天然气联盟-低碳气体技术导论 Introduction to Low Carbon Gas Technologies 2024_第3页
国际天然气联盟-低碳气体技术导论 Introduction to Low Carbon Gas Technologies 2024_第4页
国际天然气联盟-低碳气体技术导论 Introduction to Low Carbon Gas Technologies 2024_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntroductiontoLowCarbonGasTechnologies

Contents

OVERVIEWPage3

Part1:DECARBONISATIONPage6

BiomethaneproductionthroughanaerobicdigestionPage6

PyrogasificationPage8

HydrothermalgasificationPage9

E-methanePage10

SolarphotocatalyticprocessesPage11

Part2:DIVERSIFICATIONPage12

MethanereformationPage13

-MethanereformingprocessforpureH2productionPage13

WaterelectrolysisPage14

ThermalgasificationPage14

MethanepyrolysisPage15

SolarphotocatalyticprocessesPage15

BiologicalproductionPage16

GeologicalextractionPage17

Part3:INNOVATION

Page18

ACKNOWLEDGEMENTS

Page19

Frontcoverimage:iS/artisteer

02IntroductiontoLowCarbonGasTechnologies

Overview

Attheendof2023,morethan140countrieshadamid-century

carbon-neutralitypledge.Meetingthesecommitmentswillrequirea

dramaticandrapidchangeintheentireglobalenergysystem,onewhichtheflexibilityandinnovationofthegasindustryiswellplacedtodeliver.

Reducingemissionsinlinewiththe2015ParisAgreementonClimateChangewillrequire,asaminimum,therampingupofthreekeyareas:

1

Decarbonisation:improvingenergyefficiency,andreducingemissionsandmethaneleaks.

2

Diversification:usingnaturalgaswithlow-carbonandrenewablealternatives,suchasbiomethane,e-methaneandhydrogen.

3

Innovation:supportingtheindustry,bothfromalegislative,regulatoryandinvestmentperspectivetocontinuouslyinnovateitsproductsandservicesrenderedtomarkets,consumersandusers.

Organicgrowth:

Amodernbiofuelgasplant.

Photo:iS/VadymTerelyuk

IntroductiontoLowCarbonGasTechnologies03

Overview

AlignedtoIGU’ssupportoftheParisAgreement’sNationallyDeterminedContributionstoreduceGHG

emissionsanditscommitmenttosignificantlydecarbonisetheglobalenergysystem,this“IntroductiontoLowCarbonGasTechnologies”providesabriefguideonkeylow-carbonandrenewablegastechnologiesthatarecurrentlyavailablefordeploymenttorampupthegasindustry’seffortstowardsdeepdecarbonisation.

Naturalgasanditsevolvingtechnologiessupporttherenewableenergysupplybyovercomingintermittencyandinstability.Existingnaturalgasinfrastructurewillalsoenablecost-effectiveandmorerapiddeploymentoflow-carbonandrenewablegases-criticalfordeepdecarbonisationoftheglobaleconomy.Together,theycanenablenet-zeropathways,energysecurityandaccessissues.

Futureenergymix:

Therearearangeof

optionsonthehorizon.

Image:iS/sharfsinn

04IntroductiontoLowCarbonGasTechnologies

Overview

I.

Thefirstsectionofthereportwillreviewthemainfivelow-CO2gastechnologiesaimingtodecarbonisethemethanemoleculesupplychain.Theseare:

1

Anaerobicdigestion:biomethanebasedonwetbiomass.

2

Pyrogasification:syntheticmethaneobtainedfromthermo-chemicalprocesswastesrichincarbon.

3

4

Hydrothermalgasification:syntheticmethanebasedonliquidbiomasstreatmentathightemperatures.

5

E-methane:syntheticmethaneusingcarbondioxideasfeedstock.Solarphotocatalyticprocesses.

Thesecondsectionofthereportwillprovideanoverviewofhydrogenproduction

technologiesasenergycarriers.Currently,thereisalimitednumberofsuchtechnologiesinwidespreadoperation,andthesemustberampedupbyordersofmagnitudetobe

consistentwiththeworld’scurrentclimatetargets.Onlythencanweensurethattheprioritiesofenergysecurityandenergytransitiondonotundermineeachother.

Thecurrentenergy-carryinghydrogenproductiontechnologiesare:

Methanereformation:extractinghydrogenfrommethanemoleculesandremovingCO2.

Waterelectrolysis:usingrenewableelectricitytoproducehydrogenfromwater.

Thermalgasification:extractinghydrogenfromsolidmaterialwithhighheat.

Methanepyrolysis:extractinghydrogenfrommethaneusingaprocessthatdoesnotproduceCO2.

Solarphotocatalytic:usingdedicatedsolarenergyinstallationstoproducerenewablehydrogen.

Biologicalproductionofhydrogen:throughfermentationandphotolysisofbiomass.

Geologicalextractionofnaturalhydrogen.

2.

4

6

3

7

2

5

1

IntroductiontoLowCarbonGasTechnologies05

Decarbonisation

INTERNATIONALGASUNION

UNIONNTERNATIONAEDUGAZ

bcu

I.Decarbonisation

1Biomethaneproductionthroughanaerobicdigestion

Feedstocksproduction,storageandphysicalpretreatment

Production

Digestate

valorisation

Biogas/Biomethanevalorisation

Anaerobicdigestion

Biogas

Combinedheat

andpowerplant

(CHP)

Digestate

Collect

feedstocks

Digestatestorage

Fertilizer

Storage

Biogasupgrading

Biofuel

Spreading

Naturalgasgridinjection

Agriculturalwastes

Other

biowastes

Electricity

Biomethane

Manure

Heat

Anaerobicdigestionisaprocessthroughwhichbacteriabreakdownorganicmatterintheabsenceofoxygen.

Thisprocessreleasesenergy-richbiogas,whichisrelativelyhighinmethane(CH4)contentandcanbe

capturedandusedasfuel.Itcanbeenhancedeitherbyinjectinghydrogen(H2)inthereactororbyusingalightelectricalcurrenttoimprovetheCH4/CO2-ratio.

Thereisawiderangeofpotentialorganicmatterinputsthatcanbeusedasfeedstock,suchasfoodandfeedindustrywastes,manureandslurry,greenwastes,intermediatecropsandsewagesludge.

06IntroductiontoLowCarbonGasTechnologies

Decarbonisation

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

bcu

Biomethaneisconsideredcarbon-neutral

Biomethaneproductioncapturesmethane,astrong

greenhousegas,fromitsbiorawmaterial,andturnsitinto

usefulfuel.Thisprocessstopsmethanefromescapingintotheatmosphere,whereitwouldcontributetoglobalwarming.

Biomethane,madefrombiogas,canbeusedjustlikenaturalgas.

Iteasilyusestheexistinggassystemswithoutneedinganychanges,makingitacost-effectiveandsimplewaytosupportdecarbonisation.

CO2fromtheatmosphereiscapturedbyorganicwasteusedtoproduce

biomethane.ItscombustionproducesbiogenicCO2emissions.

Compensationeffect:almostnoimpactongreenhousegasemissions.

0

CarbonNeutral

%

1.CollectionOrganicwasteiscollectedand

transportedtothemethanisationsite.

fermentation

processwhichproduces

digestateandbiogas.

Digestate

Isusedandanaturalfertiliser.

Biogas

Arenewablefuelto

generateheat(hotwaterandsteam)and

electricity(CHP)onsite.

Organicwaste

goesthroughananaerobic

2.Anaerobicdigestion

RGGO=1MWhgreengasinjected

4.EndusesBiogasispurifiedtobeinjectedinto3.Upgrade

thegasgridforindustrialanddomesticuses,suchasheatingandcooking.

Thesefeedstocksarecollectedandtransportedtothefacility(methanisationsite),wheretheyareturnedintobiogas.

Thebiogascanthenbedirectlyusedtoproduceelectricityandheat,oritcanbepurifiedintoBiomethane,whichisaone-for-onereplacementfornaturalgas.

Biomethanecanbeinjectedintotheexistinggasgridforindustrialanddomesticuses,suchasheatingorcooking,andformobilitypurposes.Itisimportanttorememberthattheefficiencyofbiomethaneproductionisheavilydependentonthesourcematerial.

IntroductiontoLowCarbonGasTechnologies07

Decarbonisation

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

2Pyrogasification

Pyrogasificationisathermochemicalprocessthatconsistsofheatingwasteintheabsenceofoxygentoproducearenewablemethane.Ithastwomainsources:

IDrybiomass:woodwaste,residuesfromwastemanagement,andmostorganicwaste.

IISolidrecoveredfuels(SRF)areproducedfromhouseholdrecyclingwasteandgeneralindustrialandcommercialwaste.

Oncecollected,thewasteisheatedtoveryhightemperatures(800to1,500degreesCelsius)inthepresenceofasmallamountofoxygen,convertingthewasteintosyntheticgas(syngas).Syngasisrichincarbonmonoxide,hydrogen,carbondioxideandmethaneandmustbepurified.

SyngasfromSRFcontainsmorepollutantsthansyngasfromcleanbiomass,suchasfromplants.Further

challengesarefoundinconventionalinorganicgasremovalprocesses,whichmustbeadaptedbeforebeinguseable.

Developmentisalsonecessarytopurifythesyngasaccordingtoitsfutureusage,includinginmakingammonia,methanolorotherindustrialchemicalsandfuels.

Pyro-gasificationprocess

Stepaimingtoincreasethecarbon

conversion

intomethane

Stepaiming

atconvertingbiomassintoasyntheticgas(<<syngas>>)richinCO,H2,CO2andCH4

Stepdesignedtoremove

undesirablecompoundssuchastarsorinorganicsulfur

StepdesignedtoadjustthebioSNGqualityaccordingto

itsusage

CO+3H2>>CH4+H2OCO2+4H2>>CH4+2H2O

Hightemperatureheatapplied

Renewable

carbon

feedstock

Catalytic

methanation

Syngas

purification

Gas

upgrading

Removingimpurities

BioSNG

Fieldwork:Biogasfromcorn.Photo:iS/Jan-Otto

08IntroductiontoLowCarbonGasTechnologies

Decarbonisation

3Hydrothermalgasification

Hydrothermalgasificationrequiresthepresenceofwatertoconvertwetorliquidorganicwasteintosyngas,throughaprocesswhichsubjectsthewastetohighpressureandtemperatures.

Theproducedsyngasisarenewablegas,composedofmethane,hydrogenandcarbondioxide.However,thecompositionofthissyngasvaries,accordingtothecharacteristicsoftheinputs.

Theprocesscreatesgreengasesusingliquidorganicwaste,whichisotherwisedifficulttodisposeof,suchasdigestatesfromanaerobicdigestion,sewagesludgefromindustrialormunicipalwastewatertreatmentplants,macroandmicro-algae,liquidandsolidfarmingwaste,foodindustryresiduesandby-products.

Thehydrothermalgasificationconsistsofthefollowing:

-Liquidorganicwasteispumpedathighpressure(260-300bars).

-Thematterthenpassesthroughaheatexchanger,whichseparatesphosphorus,potassium,calciumandmetalswhichareextractedandrecovered.

Hydrothermalgasificationisgasificationinhotcompressedwaterwhichuseswaterinasupercriticalstate

HydrothermalreactorSyngasabovethe

watersupercritical

point(221bar,374oC)

Non-catalytic600-700oC

S

Syngas

Separation

Catalytic380-420oC

CH4

Liquidorganicwaste

Productionofsyngas,CH4,H2,orchemicals

●Rawsyngascanbevalorisedeitherdirectlyforheatand/orelectricityproduction,orpurifiedtocleanCH4orH2,orconvertedintochemicals.

CH4contentreaches50-60%incatalyticconversion,andupto90%whenH2isco-injectedinthegasifier.H2concentrationcanachieve50-75%insyngas.

Source:2020.LeCadreE.MertensJ.EmergingSustainableTechnologies

P,K,Ca

metalsrecovery

Heat

exchanger

Waterand

NH4+

260-300bar

Purification

Pump

CO2

H2

Theprocessispossibleatbothhigherandlowertemperatures(aslongasacatalystisused).Therearepositivesandnegativesforboth,ashighertemperaturesrequiremoreenergy,andtheuseofapreciousmetalcatalystatlowertemperaturesiscostlyandhasafinitelifespan.

IntroductiontoLowCarbonGasTechnologies09

Decarbonisation

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

bcu

Theresultingsyngasisthenpurifiedtoextractunwantedcarbondioxide,leavingmethaneandhydrogen.Thisrawsyngashasthepotentialtobeuseddirectlyforheatandelectricityproduction.Alternatively,the

hydrogencanbeusedtoconvertsomeofthecarbondioxideintoadditionalmethanethroughamethanationstep,afterwhichtheresultinggascanbetreatedsoitisreadytoinjectintothegastransmissionsystem.

Methanecontentreaches50-60%incatalyticconversionandevenupto90%whenadditionalhydrogenisalsoinjectedintothegasifier.Theprocessproducesmethaneorhydrogenefficiently.

4E-methane

Methanationcanalsobeusedtocombinecarbonmonoxide(CO)orcarbondioxide(CO2)withhydrogentoproducee-methane,inaprocessthatalsoproducesheat.Methanationisaprocessthroughwhich

hydrogenisconvertedintomethane,whichcanbeusedintheexistingnaturalgasinfrastructure.

Carbondioxidecanbeobtainedfrommanysources,suchasmethanisationplants(biogenicCO2)orfrom

industrialproductionandcapturefromtheatmosphere,supportingthedevelopmentofawiderangeofnewtechnologiesthatmayhavethepotentialtoreducegreenhousegasemissions.

CO2canbeusedasbuildingblocksforhighadded-valuefuelslikemethane

SOURCEofCO2

Atmosphere

Cleaning

Capture(iflowconcentration)

OR

Industry

SOURCEofHYDROGEN

elabityle}Electrolyser

Plants

Algae,Cynobacteria,

CO2

CO2

Minerals

Bacteria

CO2

C2}2

+

CO2

VALORISATION

PHOTOSYNTHESISBiological

ENHANCEDOILRECOVERY

CARBONATIONFOODINDUSTRY

POLYMERISATIONChemical

MINERALISATIONChemical

FERMENTATIONBiological

HYDROGENATIONChemical

Co-Electrolysis

MARKETS

Decarbonisedrenewable

electricity

requiredforallprocessestobe

sustainable

Thiscouldbesyntheticnaturalgas(=syntheticmethane)

10IntroductiontoLowCarbonGasTechnologies

Decarbonisation

5Solarphotocatalyticprocesses

Artificialphotosynthesis(AP),alsoknownassolarphotocatalyticprocess,hasthepotentialtoproducesyntheticmethane.ThisprocessdecreasesorremovestheneedforusingelectricalpowerandGHG

emissions,aswellasbiomass,intheproductionoflow-CO2methane.

Artificialphotosynthesisseekstoreplicatethenaturalphotosynthesisprocess.Itwidelyusessemi-conductorsasthephotocatalyst,anditoftensplitstheprocessintotwosteps:

IProductionofhydrogenbysplittingwaterthroughthemethodofphotocatalysis.

IICarbondioxideproduction,anditssubsequentreactionswithhydrogen,toformlightweighthydrocarbons,byusingdifferentapproaches.

OxygenEvolution

Reaction(OER)

h

O2

Greenhydrogenmarket

CO2

H2O

bH2b

(photo)-electrocatalysis

HydrogenEvolution

Reaction(HER)

Greensyntheticmolecules

(CH4,CH3OH,COOH,CxHy,...)

Conversion:PhotovoltaicpowersupplysystemsPhoto:iS

IntroductiontoLowCarbonGasTechnologies11

Diversification

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

bcu

2.Diversification

Hydrogenissettoplayagrowingroleintheenergysector,withseveralemergingtechnologiesaimingtoconvertvariousinputsintohydrogen,whichcanthenbeutilisedwithinthepowerandheatingindustries,andasfeedstockinthechemicalindustry.

Thegraphbelowillustrateshydrogenproductiontechnologiesandtheirpotentialenergysources:

Hydrogen

Inadditiontothesetechnologies,geologicalH2isemergingasapotentialsource.

Mostexistinghydrogenmarketsareveryspecific,consistingmainlyofindustrialuseandsupplyinginputsintoammoniaandmethanolproduction,actingalsoasareducingagentforthepetrochemical,chemical,steelandfoodindustries.

Presentusesofhydrogenasanenergycarrierremainlimited,andoftenexperimentalandpilot;however,

globalplanstoexpandthemaresignificant.Thereareseveraltechnologyadvancementprioritiestoaddressfortheseplanstomaterialise:

-Loweringcostsandgrowingtheircommercialtrackrecord.

-Storageandtransportationtechnologies,infrastructure,andstandards.

-Certificationdevelopment.

-End-userequipmentconversiontosupporthydrogenasfuel.

12IntroductiontoLowCarbonGasTechnologies

Diversification

INTERNATIONALGASUNION

UNIONNTERNATNALEDUGAZ

1Methanereformation

I

Methane(CH4)canbeutilisedtocreatepurehydrogenusingthefollowingprocessofsteammethanereformation:

II

Byusingheat,steamandmethanereacttogetherwithacatalysttoformcarbonmonoxideandhydrogen;thisisanenergy-intensiveprocess.

Inthewater-gasshiftreaction,carbonmonoxideiscombinedwithmoresteam,

producinghydrogenandcarbondioxide.Thecarbondioxidecanthenbecapturedthroughcarboncapturetechnologies,asitisinacontrolledenvironment.

Ifcarboncaptureandsequestrationarenotutilisedduringthisprocess,therewillbecarbonemissions

associatedwithit.However,whencarboncaptureandsequestrationareaddedtotheprocess,thehydrogenproducedisconsideredlowcarbon,alsocalled“bluehydrogen”.

MethanereformingprocessforpureH2production

Thisprocessconsistsoffourstages:

IPretreatmentunittopre-formfeedstockandtoeliminatesulphurcompounds.

IIReformingsteptoproducesyngasusingeithersteammethanereforming,partial

oxidisationorautothermalreforming.Itispossibletocombinethesetechnologies.IIIShiftreactor(s)toconvertsyngasand(increaseH2contentanddecreaseCO).

IVThepurificationunitseparatesthehydrogenfromtheproductstream.CO2canbecapturedthroughcarboncapturetechnologies.

1

Pretreatment

2

SteamMethaneReforming

Partial

Oxidation

AutothermalReforming

Steam

Heat

3

Water-GasShiftConversion

4

CO2

NaturalGas,HeavyOil,Naphtha,LPG

O2

Steam

O2

CO2

Purification

Hydrogen

Catalysts:

-TherelativecatalyticactivityofmetalsintheSMRreaction:Ru>Rh>Ir>Ni>Pt>Pd

PartialOxidation

CH4+1/2O2>>CO+2H2H=36kJ/mol

-Conventionaliron-chromiumforhightemperatureWGSandcopperalloysforlowtemperatureWGS

AutothermalReforming

CH4+H2O>>CO+3H2CH4+1/2O2>>CO+2H2

Water-GasShift

CO+H2O>>H2+CO2H=41kJ/mol

SteamMethaneReforming

CH4+H2O>>CO+3H2H=206kJ/mol

IntroductiontoLowCarbonGasTechnologies13

Diversification

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

bcu

2Waterelectrolysis

Waterelectrolysisisawayofproducinghydrogenthatuseselectricitytosplitwaterintohydrogenand

oxygen.Whentheelectricityusedintheprocessisrenewableornuclear,therearenoGHGemissionsproducedintheprocess,andthiscanbereferredtoasrenewable,“green”and“pink”hydrogen,respectively.

Anelectricalcircuitiscreatedbycombininganelectrolyteandtwoelectrodestoformanelectrolyticcell.Thesechargedelectrodesthensplitthewater,withtheresultingnegativelychargedelectrodeattractingthepositivelychargedhydrogenionsand,conversely,thepositiveelectrodeattractingthenegativelychargedoxygenions

formingseparatebubblesofoxygenorhydrogenthatcanthenbecollected.

Therearefivemaintechnologiesusedtoperformwaterelectrolysis,whichdifferintermsofthematerialsusedfortheelectrodesandplates:

I

II

III

Alkalineelectrolysis

PEM(Protonexchangemembrane)electrolysis

SOEC(Solidoxideelectrolysis)

IVPCEC(Photoelectrochemical)

VAEM(Anionexchangemembrane)

Eachofthesefivetechnologieshasbenefitsanddrawbacks,rangingfromcost,efficiency,anddurability.

Thisiswhyfurtherresearchtoimproveperformanceandviabilityofwaterelectrolysisiscurrentlyongoing.

3Thermalgasification

Thermalgasificationisaprocessthatuses

solidorganicmatter(suchascoal,biomass-basedfeedstocks,SRFsandfractionsofnon-recyclableplastics)andconvertsthemintosyngasusing

hightemperatures(rangingfrom700-1500°C).Thereactionoccursunderstoichiometric

conditions(meaningallreactantsarecontrolledandfullyused),turningsolidresiduesinto

syngas.

Thesyngasisthenpurifiedtoremoveorganic

pollutants(suchaslightandheavytars)and

inorganicpollutants(suchashydrogensulphide,ammonia,andhydrochloricacid).Thisisthen

followedbythegas-watershiftreaction,which

meansthatthecarbonmonoxideproducedcan

beconvertedintoadditionalhydrogenandcarbondioxide.

Thegasesproducedarecollected,andhydrogenisextractedfromtheothergasesproduced(mainlycarbondioxide,carbonmonoxideandmethane)togivethehydrogenapurityofover99.9%.

14IntroductiontoLowCarbonGasTechnologies

Diversification

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

bcu

4Methanepyrolysis

Methanepyrolysisusesmethaneasfeedstockand,byapplyingenergytobreakthechemicalbondbetweencarbonandhydrogen,itproduceshydrogengasandasolidcarbonproduct.

Theprocessrequireslessenergythanelectrolysis,anditsGHGfootprintislowduetotheabsenceofemissions.

Usingnaturalgasasfeedstockalsoprovidesthebenefitofaccesstotheexistinginfrastructure.Therearedifferentwaysofgeneratingtheheatformethanepyrolysis:

IPlasmapyrolysis:electriccurrentsareusedtocreateahotplasmawhichbreaksdownthemethaneintohydrogenandcarbon.

IIThermalpyrolysis:hotbathsofmoltensaltsormetalsareusedtobreakdownthemethaneintohydrogenandcarbon.

IIICatalyticpyrolysis:methaneispassedthroughafluidisedbedcontainingacatalystwhichbreaksdownthemethanewithincreasedefficiency.

IVMicrowaveassistedpyrolysis:microwavesareusedwithacatalysttobreakthemethanemoleculeintohydrogenandcarbon.

5Solarphotocatalyticprocesses

SolarphotocatalyticprocessesavoidanyGHGemissionsastheyrelyexclusivelyonsolarpower:

aphotocatalyticinstallationwhichcouldbefurtherenhancedbytheadditionofsolarPVpanels.Inthis

process,aphoto-absorber(typicallyasemi-conductor)absorbslight,leadingtotheseparationofpositiveandnegativecharges.Thereductioncreateshydrogen,andoxidationproducesoxygen,hydrogen,and

e-charges,makingthemavailableforredoxreactions(transferofelectrons)toproducehydrogenfromwater.Thisbasicconceptisutilisedinseveraltechnologies:

I

Photocatalysed(PC)watersplitting:thissystemisthesimplestoneand

consists,typically,ofaphotocatalystimmersedinasolution,atthesurfaceof

whichthereactionstakeplace.Oxygenandhydrogenmustbefurtherseparated.

II

Photo-ElectroChemical(PEC)watersplitting:thissystemisbasedontheprincipleofelectrolysiswheretheanodeand/orcathodeareimplementedwithphotocatalysts.Thedifference,comparedtophotocatalysedwater

splitting,isthatthissystemiselectro-assisted,allowingthecurrenttobeincreasedforhigheryields.

III

Photo-ElectroChemical(PV-EC)watersplitting:thislastsystemisoftenassociatedwithPCandPECprocessesandconsistsofanelectrolyser

equippedwithanintegratedhighlyefficientmultijunctionIII-VPVcell.

IntroductiontoLowCarbonGasTechnologies15

Diversification

INTERNATIONALGASUNION

UNIONNTERNATIONALEDUGAZ

bcu

6Biologicalproduction

Therearetwomainbiologicalprocessesthatcanbeusedtoproducehydrogen:fermentationandbiophotolysis.

Thefermentationprocessharnessesmacro-nutrients(longmolecules)frombiomass,whicharebrokendown

intohydrogen,andshortmoleculessuchasalcohols,simplesugars,andvolatilefattyacids.Variousfermentationtechnologiesarelistedbelow,anditshouldbenotedthatphotofermentationandMECmustbecoupledwith

thefirststepofdarkfermentationinatwo-stepprocess.

IDarkfermentation(fermentationwithoutlight),wherethesubstrateusedisacomplexorganicmatter.Large-scalebacteriacanperformdarkfermentation.

IIPhoto-fermentation(fermentationassistedbylight),wherethesubstrateusedissmallorganicacids.

IIIMECfermentation(assistedbyalowelectricalcurrent),wherethesubstrateusedisasimplecarbonsourcesuchasC2toC6(volatilefattyacids,singlesugarandalcohols).

WhileBiophotolysisproduceshydrogenfromlightandwater,cyanobacteriaandgreenalgaecansplitwaterintohydrogenandoxygenusingtheirhydrogenaseornitrogenaseenzymesystem.

Macro-nutrientsfrombiomass

Carbohydrates,

proteins,

lipids

Image:iS

(alcohols,simple

sugars,volatile

fattyacids)

Bacteria

H2+shortmolecules

16IntroductiontoLowCarbonGasTechnologies

Diversification

7Geologicalextraction

TherearetwomainwaysofproducingH2throughgeologicalextraction:

Naturalhydrogenproduction(“white”hydrogen)

H2ismainlyproducedthroughnaturalwater-rockreactions,suchasserpentinisation,wherewater

reactswithiron-richmineralswithintheEarth’s

crust.Thishydrogenper

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论