版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市石门县二中2025届数学高二上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.2.设,则A.2 B.3C.4 D.53.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.5.已知等比数列的各项均为正数,且,则()A. B.C. D.6.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号7.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆8.若直线a不平行于平面,则下列结论正确的是()A.内的所有直线均与直线a异面 B.直线a与平面有公共点C.内不存在与a平行的直线 D.内的直线均与a相交9.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.1210.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.11.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为()A. B.C. D.12.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,E,F分别是三棱锥的棱AD,BC的中点,,,,则异面直线AB与EF所成的角为______.14.设实数、满足约束条件,则的最小值为___________.15.已知圆:和圆:,动圆M同时与圆及圆外切,则动圆的圆心M的轨迹方程为______.16.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线E:过点Q(1,2),F为其焦点,过F且不垂直于x轴的直线l交抛物线E于A,B两点,动点P满足△PAB的垂心为原点O.(1)求抛物线E的方程;(2)求证:动点P在定直线m上,并求的最小值.18.(12分)在四棱锥中,底面是边长为2的菱形,平面,,是的中点.(1)若为线段的中点,证明:平面;(2)线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求的长,若不存在,请说明理由.19.(12分)在△中,内角所对的边分别为,已知(1)求角的大小;(2)若的面积,求的值20.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.21.(12分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值22.(10分)如图,四棱锥的底面是正方形,平面平面,E为的中点(1)若,证明:;(2)求直线与平面所成角的余弦值的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D2、B【解析】利用复数的除法运算求出,进而可得到.【详解】,则,故,选B.【点睛】本题考查了复数的四则运算,考查了复数的模,属于基础题3、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D4、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A5、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B6、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B7、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.8、B【解析】根据题意可得直线a与平面相交或在平面内,结合线面的位置关系依次判断选项即可.【详解】若直线a不平行与平面,则直线a与平面相交或在平面内.A:内的所有直线均与直线a异面错误,也可能相交,故A错误;B:直线a与平面相交或直线a在平面内都有公共点,故B正确;C:平面内不存在与a平行的直线,错误,当直线a在平面内就存在与a平行的直线,故C错误;D:平面内的直线均与a相交,错误,也可能异面,故D错误.故选:B9、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D10、C【解析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.11、D【解析】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,求出点M的轨迹方程即可计算得解.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,化简并整理得:,于是得点M的轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故选:D12、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取的中点,连结,由分别为的中点,可得(或其补角)为异面直线AB与EF所成的角,在求解即可.【详解】取的中点,连结由分别为的中点,则所以(或其补角)为异面直线AB与EF所成的角由分别是的中点,则,又在中,,则所以,又,所以在直角中,故答案为:14、2【解析】画出不等式组对应的可行域,平移动直线后可得目标函数的最小值.【详解】不等式组对应的可行域如图所示:将初始直线平移至点时,可取最小值,由可得,故,故答案为:2.15、【解析】根据动圆同时与圆及圆外切,即可得到几何关系,再结合双曲线的定义可得动点的轨迹方程.【详解】由题,设动圆的半径为,圆的半径为,圆的半径为,当动圆与圆,圆外切时,,,所以,因为圆心,,即,又根据双曲线的定义,得动点的轨迹为双曲线的上支,其中,,所以,则动圆圆心的轨迹方程是;故答案为:16、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,的最小值为.【解析】(1)将点的坐标代入抛物线方程,由此求得的值,进而求得抛物线的方程.(2)设出直线的方程,联立直线的方程与抛物线的方程,写出韦达定理,设出直线的方程,联立直线的方程求得的坐标,由此判断出动点在定直线上.求得的表达式,利用基本不等式求得其最小值.【详解】(1)将点坐标代入抛物线方程得,所以.(2)由(1)知抛物线的方程为,所以,设直线的方程为,设,由消去得,所以.由于为三角形的垂心,所以,所以直线的方程为,即.同理可求得直线的方程为.由,结合,解得,所以在定直线上.直线的方程为,到直线的距离为,到直线的距离为.所以,当且仅当时取等号.所以的最小值为.【点睛】本小题主要考查抛物线方程的求法,考查直线和抛物线的位置关系,考查抛物线中三角形面积的有关计算,属于中档题.18、(1)证明见解析;(2)存在点,且的长为,理由见解析.【解析】(1)取的中点为,连接,得到,结合面面平行的判定定理证得平面平面,进而得到平面;(2)以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,设,求得的法向量为和向量,结合向量的夹角公式列出方程,求得的值,即可求解.【小问1详解】证明:取的中点为,连接,因为分别为的中点,所以,又因为平面,且,所以平面平面,又由平面,所以平面.【小问2详解】解:以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,如图所示,因为底面是边长为2的菱形,设,在直角中,可得,在直角中,可得,在中,因为,所以,即,解得,设,可得,则,设平面的法向量为,则,令,可得,设直线与平面所成角为,所以,解得,即,所以存在点,且的长为.19、(1);(2)【解析】(1)由正弦定理,将条件中的边化成角,可得,进而可得的值;(2)由三角形面积公式可得,再由余弦定理可得,得最后结论试题解析:(1),又∴又得(2)由,∴又得,∴得考点:正弦定理;余弦定理【易错点睛】解三角形问题的两重性:①作为三角形问题,它必须要用到三角形的内角和定理,正弦、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路;②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口20、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例函数模型拟合效果更好,然后将代入回归方程中可求结果(3)利用已知数据求出样本标准差s,从而可得非原料成本y服从正态分布,再计算,然后各个数据是否在此范围内,从而可得结论【小问1详解】令,则可转化为,因为,所以,所以,所以,所以y关于x的回归方程为【小问2详解】与的相关系数为因为,所以用反比例函数模型拟合效果更好,把代入回归方程得(元),所以产量为10千件时每件产品的非原料成本约为11元【小问3详解】因为,所以,因为样本标准差为,所以,所以非原料成本y服从正态分布,所以因为在之外,所以需要此非原料成本数据寻找出现异样成本的原因21、(1)是,;(2)【解析】(1)由题意设出所在直线方程,与抛物线方程联立,化为关于的一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人借款协议印花税处理办法
- 2024年专业电缆敷设服务协议一
- 2024年住宅区拆迁改造工程承包合同版
- 2024年云服务提供商之间的合作协议
- 江南大学《高级英语(1)》2023-2024学年第一学期期末试卷
- 江南大学《电路与电子技术B1》2021-2022学年第一学期期末试卷
- 2024年全球贸易销售条款详细协议版B版
- 2024企业内部承包经营的合同范本
- 暨南大学《运筹学》2021-2022学年第一学期期末试卷
- 暨南大学《社会科学通论》2021-2022学年第一学期期末试卷
- 化学纤维项目可行性研究报告
- 婴幼儿保育技能大赛考试题库(浓缩500题)
- 昆明茶马古道规划方案
- 2024春期国开电大专科《监督学》在线形考(形成性考核一至四)试题及答案
- 公路桥梁施工安全
- 双减背景下小学数学作业的创新设计五篇集合
- 光伏项目安全培训课件
- 培养幼儿人际交往能力
- 物流专业个人能力展示
- 五年级上册小数除法竖式计算练习300题及答案
- 大学生职业规划数据分析师
评论
0/150
提交评论