版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省芮城市高二上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与直线平行,则()A. B.C. D.2.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.43.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.644.已知向量,,且,则的值为()A. B.C.或 D.或5.为了调查修水县2019年高考数学成绩,在高考后对我县6000名考生进行了抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本,这项调查宜采用的抽样方法是()A.系统抽样法 B.分层抽样法C.抽签法 D.简单的随机抽样法6.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.7.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.108.双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12 B.2或18C.18 D.29.已知数列的通项公式为,则()A.12 B.14C.16 D.1810.直线与直线,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.12.等差数列的前项和为,若,,则()A.12 B.18C.21 D.27二、填空题:本题共4小题,每小题5分,共20分。13.函数在点处的切线方程是_________14.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.15.已知P是椭圆的上顶点,过原点的直线l交C于A,B两点,若的面积为,则l的斜率为____________16.设是椭圆上一点,分别是椭圆的左、右焦点,若,则的大小_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.18.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.19.(12分)设AB是过抛物线焦点F的弦,若,,求证:(1);(2)(为弦AB的倾斜角)20.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.21.(12分)在中,,,为边上一点,且(1)求;(2)若,求22.(10分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.2、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.3、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A4、C【解析】根据空间向量平行的性质得,代入数值解方程组即可.【详解】因为,所以,所以,所以,解得或.故选:C.5、B【解析】考生分为几个不同的类型或层次,由此可以确定抽样方法;【详解】6000名考生进行抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本又文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好故选:B.【点睛】本题主要考查的是分层抽样,掌握分层抽样的有关知识是解题的关键,属于基础题.6、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C7、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.8、C【解析】利用双曲线的定义求.【详解】解:由双曲线定义可知:解得或(舍)∴点到的距离为18,故选:C.9、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D10、A【解析】根据直线与直线的垂直,列方程,求出,再判断充分性和必要性即可.【详解】解:若,则,解得或,即或,所以”是“充分不必要条件.故选:A.【点睛】本题考查直线一般式中直线与直线垂直的系数关系,考查充分性和必要性的判断,是基础题.11、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题12、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得函数的导数,得到且,再结合直线的点斜式,即可求解.【详解】由题意,函数,可得,则且,所以在点处切线方程是,即故答案为:.14、【解析】由三角形面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.15、【解析】设出直线AB的方程,联立椭圆方程得到A点横坐标满足,再利用,解方程即可得到答案.【详解】设直线AB的方程为:,,由,得,所以,又所以,解得.故答案为:16、【解析】,,利用椭圆的定义、结合余弦定理、已知条件,可得,解得,从而可得结果【详解】椭圆,可得,设,,可得,化简可得:,,故答案为【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)样本中高一年级学生的人数为,;(2);(3)【解析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.18、(1)证明见解析(2)【解析】(1)以为原点,、、分别为轴、轴、轴建立空间直角坐标系,证明出,,结合线面垂直的判定定理可证得结论成立;(2)利用空间向量法可求得平面与平面夹角的大小.【小问1详解】证明:底面,,故以为原点,、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则、、、、、,所以,,,,则,,即,,又,所以,平面.【小问2详解】解:知,,,设平面的法向量为,则,,即,令,可得,设平面的法向量为,由,,即,令,可得,,因此,平面与平面夹角的大小为.19、(1)证明见解析(2)证明见解析【解析】(1)设直线的方程为,代入,再利用韦达定理,即可得到结论;(2)由抛物线的定义,结合余弦函数的定义,即可得到的长,同理可得的长,两式相乘即可证明;【小问1详解】证明:由题意设直线的方程为,代入,可得,所以;【小问2详解】证明:如图,不妨设弦AB的倾斜角为锐角,作垂直于抛物线准线,垂足为M,N,由抛物线的定义可得,所以,同理可得,,所以,当为直角或钝角时,同理可证明,故.20、(1)(2)【解析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是菱形.由,得轴,设点,则,由抛物线的对称性知,,,.由,得,解得,所以在菱形中,,边上的高,所以菱形的面积.21、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【详解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴22、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷含答案(达标题)
- 国画基础学教案
- 暑假的学习计划(16篇)
- 湖北省襄阳市2023-2024学年高一上学期期末考试化学试题(含答案)
- 评估服务委托合同
- 诚信承诺声明
- 详细保证书模板保证心得
- 语文大专辩论赛评分卷
- 财务收款确认书
- 质量守则系统保证书
- 气胸、血胸病人的护理课件
- 培养青年教师方案
- 2024时事政治必考试题库(含答案)
- 在线网课知慧《税收筹划(安徽财大)》单元测试考核答案
- 安徽省医疗保障基金使用违法违规问题检查指引2023版
- 手术室外麻醉的风险
- 综合医院中精神障碍的识别
- ZYJ7道岔故障处理
- 国家开放大学《中文学科论文写作》形考任务1-4参考答案
- 东北三省联考(辽宁名校联盟)2024届高三12月联合考试语文试题及参考答案
- 100以内加减法练习题(3000道)
评论
0/150
提交评论