




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省酒泉市酒泉中学数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.32.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)3.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{an}中,,公和为5,则()A.2 B.﹣2C.3 D.﹣34.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-15.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°6.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6 B.8C.9 D.107.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种8.若存在过点(0,-2)的直线与曲线和曲线都相切,则实数a的值是()A.2 B.1C.0 D.-29.已知椭圆=1的离心率为,则k的值为()A.4 B.C.4或 D.4或10.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-1011.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.12.设函数,则()A.1 B.5C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.14.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______15.如图,在棱长都为的平行六面体中,,,两两夹角均为,则________;请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线垂直.这三个顶点可以是________16.已知集合,,将中的所有元素按从大到小的顺序排列构成一个数列,则数列的前n项和的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图像在处的切线斜率为,且时,有极值.(1)求的解析式;(2)求在上的最大值和最小值.18.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值19.(12分)已知圆.(1)若不过原点的直线与圆相切,且直线在两坐标轴上的截距相等,求直线的方程;(2)求与圆和直线都相切的最小圆的方程.20.(12分)已知椭圆()与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且,(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)P是椭圆C上异于上顶点,下顶点的任一点,直线,,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值21.(12分)某校高三年级进行了一次数学测试,全年级学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若(1)求a,b的值;(2)若成绩落在区间内的人数为36人,请估计该校高三学生的人数22.(10分)已知:(常数);:代数式有意义(1)若,求使“”为真命题的实数的取值范围;(2)若是成立的充分不必要条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.2、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D3、C【解析】利用已知即可求得,再利用已知可得:,问题得解【详解】解:根据题意,等和数列{an}中,,公和为5,则,即可得,又由an﹣1+an=5,则,则3;故选C【点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题4、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.5、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.6、A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.7、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.8、A【解析】在两曲线上设切点,得到切线,又因为(0,-2)在两条切线上,列方程即可.【详解】的导函数为,的导函数为,若直线与和的切点分别为(,),,∴过(0,-2)的直线为、,则有,可得故选:A.9、C【解析】根据焦点所在坐标轴进行分类讨论,由此求得的值.【详解】当焦点在轴上时,,且.当焦点在轴上时,且.故选:C10、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C11、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.12、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.14、9【解析】由数列的前项和为,则当时,,所以,所以数列的前和为,当时,,当时,,所以满足的最小的值为.点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项与的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.15、①.②.点或点(填出其中一组即可)【解析】(1)以向量,,为基底分别表达出向量和,展开即可解决;(2)由上一问可知,用上一问同样的方法可以证明出,这样就证明了平面与直线垂直.【详解】(1)令,,,则,则有,故(2)令,,,则,则有,故故,即又由(1)之,,故直线垂直于平面同理可证直线垂直于平面故答案为:0;点或点16、【解析】由题意设,,根据可得,从而,即可得出答案.【详解】设,由,得,由,得中的元素满足,即,可得所以,由,所以所以,要使得数列的前n项和的最大值,即求出数列中所以满足的项的和即可.即,得,则所以数列的前n项和的最大值为故答案为:1472三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为.【解析】(1)由题得①,②,解方程组即得解;(2)令解得或,再列表得解.【小问1详解】解:求导得,因为在出的切线斜率为,则,即①因为时,有极值,则.即②由①②联立得,所以.【小问2详解】解:由(1),令解得或,列表如下:极大值极小值所以,在[-3,2]上的最大值为,最小值为.18、(1),(2)【解析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【点睛】本题考查了正余弦定理的应用,三角函数的有界限求解最值范围,考查了推理能力与计算能力,属于中档题19、(1)或;(2).【解析】(1)根据题意设出直线的方程,然后根据直线与圆相切,即可求出答案;(2)首先根据题意判断出最小圆的圆心在直线上,且最小圆的半径为,然后设出最小圆的圆心为,则圆心到直线的距离为,从而可求出答案.【小问1详解】因为直线不过原点,设直线的方程为,圆的标准方程为,若直线与圆相切,则,即,解得或者3,所以直线的方程为或者;【小问2详解】因为,所以直线与圆相离,所以所求最小圆的圆心一定在圆的圆心到直线的垂线段上,即最小圆的圆心在直线上,且最小圆的半径为,设最小圆的圆心为,则圆心到直线的距离为,所以,即,解得(舍)或,所以最小的圆的方程为.20、(1);(2)存在,;(3)证明见解析,定值2【解析】(1)根据已知条件,用待定系数解方程组即可得到C的方程;(2)设出AB的方程,与椭圆方程联立,得到根与系数关系,代入由确定方程内即可得到结果;(3)设P点坐标,求出M和N坐标,设出圆G的圆心坐标,求得圆的半径,由垂径定理求得切线长|OT|,结合P在椭圆上可证|OT|为定值﹒【小问1详解】设椭圆C的方程为将点代入椭圆方程有点解得,(舍)∴椭圆的方程为;【小问2详解】设,当AB斜率存在时,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,∴圆的方程为;又若AB斜率不存在时,检验知满足条件,故存在圆心在原点的圆符合题意;【小问3详解】如图:,,设,直线,令,得;直线,令,得;解法一:设圆G的圆心为,则,,,而,∴,∴,∴,即线段OT长度为定值2解法二:,而,∴,∴由切割线定理得.∴,即线段OT的长度为定值221、(1)(2)人【解析】(1)由频率分布直方图的性质求得,结合,即可求得的值;(2)由频率分布直方图求得落在区间内的概率,进而求得该校高三年级的人数【小问1详解】解:由频率分布直方图的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 笔记本生产合同履约金协议
- 铁路旅客运输服务铁路客运安全车站规范课件
- 铁路旅客运输服务铁路客运服务概述课件
- 手持物品铁路运输服务礼仪课件
- 铁路旅客运输服务铁路旅客运输服务质量规范89课件
- 铁道机车专业教学郑州铁路单绍平84课件
- 监理辅助设施施工方案
- 山东pc板温室施工方案
- 铁道概论授课石德勇课件
- 中医经络养生知识课件
- 模板安装三检记录表
- 益阳万达广场项目总承包工程施工组织设计
- 肿瘤免疫治疗相关不良反应处理PPT演示课件
- 充电站工程监理细则
- 水利工程建设文明工地创建措施
- 液压阀门测试机安全操作规程
- 电力行业公共信用综合评价标准(试行)
- 继发性高血压的诊断思路与流程
- 上海市汽车维修结算工时定额(试行)
- 装配式建筑发展存在的问题及对策分析
- 中国古典文献学(全套)
评论
0/150
提交评论